Yann Trolez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4991578/publications.pdf

Version: 2024-02-01

471061 454577 43 958 17 30 citations h-index g-index papers 50 50 50 1065 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quadruple Functionalization of a Tetraphenylethylene Aromatic Scaffold with Ynamides or Tetracyanobutadienes: Synthesis and Optical Properties. European Journal of Organic Chemistry, 2022, 2022, .	1.2	7
2	Synthesis and Photophysical Properties of $1,1,4,4$ â \in Tetracyanobutadienes Derived from Ynamides Bearing Fluorophores**. Chemistry - A European Journal, 2022, 28, .	1.7	10
3	1,1,4,4-Tetracyanobutadiene-Functionalized Anthracenes: Regioselectivity of Cycloadditions in the Synthesis of Small Near-IR Dyes. Organic Letters, 2021, 23, 2007-2012.	2.4	30
4	Catalytic Alkyne and Diyne Metathesis with Mixed Fluoroalkoxy-Siloxy Molybdenum Alkylidyne Complexes. Organometallics, 2021, 40, 2008-2015.	1.1	10
5	Two-photon absorption properties of multipolar triarylamino/tosylamido 1,1,4,4-tetracyanobutadienes. Physical Chemistry Chemical Physics, 2021, 23, 22283-22297.	1.3	11
6	Synthesis, characterization and unusual near-infrared luminescence of 1,1,4,4-tetracyanobutadiene derivatives. Chemical Communications, 2020, 56, 3571-3574.	2.2	44
7	Expedient synthesis of conjugated triynes via alkyne metathesis. Chemical Science, 2020, 11, 4934-4938.	3.7	8
8	Synthesis and Reactivity of 5â€Bromopentaâ€2,4â€diynenitrile (BrC ₅ N): an Access to <i>ï€</i> â€Conjugated Scaffolds. Helvetica Chimica Acta, 2019, 102, e1800232.	1.0	7
9	Enhancement of Push–Pull Properties of Pentafulvene and Pentafulvalene Derivatives by Protonation at Carbon. European Journal of Organic Chemistry, 2018, 2018, 739-749.	1.2	7
10	Unconventional Synthesis of a Cu ^I Rotaxane with a Superacceptor Stopper: Ultrafast Excitedâ€6tate Dynamics and Nearâ€Infrared Luminescence. Chemistry - A European Journal, 2018, 24, 10422-10433.	1.7	9
11	The Domino Hexadehydro-Diels-Alder Reaction: An Elegant Way toward Polyacenes. CheM, 2018, 4, 2272-2274.	5.8	O
12	NHC-Based Iron Sensitizers for DSSCs. Inorganics, 2018, 6, 63.	1.2	76
13	Helicenes Grafted with 1,1,4,4â€Tetracyanobutadiene Moieties: Ï€â€Helical Push–Pull Systems with Strong Electronic Circular Dichroism and Twoâ€Photon Absorption. Chemistry - A European Journal, 2018, 24, 14484-14494.	1.7	27
14	Reactivity of Functionalized Ynamides with Tetracyanoethylene: Scope, Limitations and Optoelectronic Properties of the Adducts. Chemistry - an Asian Journal, 2017, 12, 1338-1346.	1.7	23
15	One-step synthesis of conjugated enynenitriles from bromocyanoacetylene. Organic and Biomolecular Chemistry, 2017, 15, 6050-6056.	1.5	4
16	Linear Optical and Thirdâ€Order Nonlinear Optical Properties of Some Fluorenyl―and Triarylamineâ€Containing Tetracyanobutadiene Derivatives. Chemistry - A European Journal, 2016, 22, 10155-10167.	1.7	35
17	Gasâ€Phase Infrared Spectroscopy of Substituted Cyanobutadiynes: Roles of the Bromine Atom and Methyl Group as Substituents. ChemPhysChem, 2016, 17, 1018-1024.	1.0	8
18	Synthesis, Chemistry, and Photochemistry of Methylcyanobutadiyne in the Context of Space Science. Journal of Organic Chemistry, 2016, 81, 3560-3567.	1.7	10

#	Article	IF	CITATIONS
19	Infrared and Raman Spectroscopy of Methylcyanodiacetylene (CH ₃ C ₅ N). ChemPhysChem, 2016, 17, 3047-3054.	1.0	5
20	Low-Temperature Reactivity of C _{2<i>n</i>+1} N ^{â€"} Anions with Polar Molecules. Journal of Physical Chemistry Letters, 2016, 7, 2957-2961.	2.1	12
21	Straightforward Synthesis of 5â€Bromopentaâ€2,4â€diynenitrile and Its Reactivity Towards Terminal Alkynes: A Direct Access to Diene and Benzofulvene Scaffolds. Chemistry - A European Journal, 2015, 21, 6042-6047.	1.7	21
22	New reactivity of 6,6-bis-donor-substituted pentafulvenes: one-step synthesis of highly substituted [3]cumulene and dihydropentalene. Tetrahedron, 2015, 71, 4393-4399.	1.0	13
23	Synthesis of conjugated multi-ynamides by copper-catalyzed reactions. Tetrahedron Letters, 2015, 56, 4627-4630.	0.7	9
24	Cu(I)/Zn2+ exchange has no geometrical effect in a cyclic [4] rotaxane whereas it induces rearrangement in a simpler [3] rotaxane. Inorganica Chimica Acta, 2014, 417, 186-191.	1.2	4
25	Cyclic [4]Rotaxanes Containing Two Parallel Porphyrinic Plates: Toward Switchable Molecular Receptors and Compressors. Accounts of Chemical Research, 2014, 47, 633-645.	7.6	96
26	Highâ€Yield Formation of Substituted Tetracyanobutadienes from Reaction of Ynamides with Tetracyanoethylene. Chemistry - A European Journal, 2014, 20, 9553-9557.	1.7	48
27	Rotational spectrum of 4-methylcyanoallene (CH ₃ CH=C=CH-CN), a chiral molecule of potential astrochemical interest. Astronomy and Astrophysics, 2014, 564, A82.	2.1	2
28	Use of Cleavable Coordinating Rings as Protective Groups in the Synthesis of a Rotaxane with an Axis that Incorporates More Chelating Groups Than Threaded Macrocycles. Chemistry - A European Journal, 2013, 19, 12815-12823.	1.7	11
29	Methylcyanobutadiyne: Synthesis, Xâ€ray Structure and Photochemistry; Towards an Explanation of Its Formation in the Interstellar Medium. Chemistry - A European Journal, 2013, 19, 17683-17686.	1.7	12
30	NIR emission of cyclic [4]rotaxanes containing π-extended porphyrin chromophores. Physical Chemistry Chemical Physics, 2012, 14, 10589.	1.3	6
31	Copper(I)-Assembled [3]Rotaxane Whose Two Rings Act as Flapping Wings. Journal of the American Chemical Society, 2012, 134, 1802-1809.	6.6	81
32	Synthesis of [2]-, [3]-, and [4]rotaxanes whose axis contains two bidentate and two tridentate chelates. New Journal of Chemistry, 2011, 35, 2009.	1.4	10
33	Formation of copper(I)-templated [2]rotaxanes using "click―methodology: influence of the base, the thread and the catalyst. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 507-515.	1.6	8
34	Intercalation of Tetrathiafulvalene between the Two Plates of a Copper(I)â€Complexed [4]Rotaxane. European Journal of Organic Chemistry, 2011, 2011, 2413-2416.	1.2	13
35	Synthesis of [5]Rotaxanes Containing Bi―and Tridentate Coordination Sites in the Axis. Chemistry - A European Journal, 2011, 17, 947-957.	1.7	35
36	A Cyclic [4]rotaxane that Behaves as a Switchable Molecular Receptor: Formation of a Rigid Scaffold from a Collapsed Structure by Complexation with Copper(I) lons. Angewandte Chemie - International Edition, 2010, 49, 10172-10175.	7.2	46

YANN TROLEZ

#	Article	IF	CITATION
37	Templated Synthesis of Cyclic [4]Rotaxanes Consisting of Two Stiff Rods Threaded through Two Bis-macrocycles with a Large and Rigid Central Plate as Spacer. Journal of the American Chemical Society, 2010, 132, 6840-6850.	6.6	76
38	Quantitative formation of [4]pseudorotaxanes from two rods and two bis-macrocycles incorporating porphyrinic plates between the rings. Chemical Communications, 2009, , 1706.	2.2	19
39	[3]Rotaxanes and [3]pseudorotaxanes with a rigid two-bidentate chelate axle threaded through two coordinating rings. New Journal of Chemistry, 2009, 33, 2148.	1.4	27
40	Synthesis, chemistry and photochemistry of cyanobutadiyne (HCCCCCN). Advances in Space Research, 2008, 42, 2002-2007.	1.2	4
41	Infrared band intensities of cyanobutadiyne (HC5N) between 400 and 4000cmâ^1. Journal of Molecular Spectroscopy, 2007, 245, 109-114.	0.4	19
42	Synthesis and Characterization of 2,4-Pentadiynenitrile—A Key Compound in Space Science. Angewandte Chemie - International Edition, 2005, 44, 7224-7226.	7.2	36
43	Passerini and Ugi Reactions Involving Kinetically Unstable Isocyanides. European Journal of Organic Chemistry, 0, , .	1.2	3