List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4991570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiation Oncology, 2012, 7, 146.	2.7	375
2	Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era. International Journal of Clinical Oncology, 2020, 25, 43-50.	2.2	156
3	Boron neutron capture therapy outcomes for advanced or recurrent head and neck cancer. Journal of Radiation Research, 2014, 55, 146-153.	1.6	134
4	Survival benefit of Boron neutron capture therapy for recurrent malignant gliomas. Journal of Neuro-Oncology, 2009, 91, 199-206.	2.9	114
5	Boron Neutron Capture Therapy for Malignant Brain Tumors. Neurologia Medico-Chirurgica, 2016, 56, 361-371.	2.2	90
6	The combined effect of boronophenylalanine and borocaptate in boron neutron capture therapy for SCCVII tumors in mice. International Journal of Radiation Oncology Biology Physics, 1999, 43, 431-436.	0.8	89
7	First Attempt of Boron Neutron Capture Therapy (BNCT) for Hepatocellular Carcinoma. Japanese Journal of Clinical Oncology, 2007, 37, 376-381.	1.3	87
8	Analysis of interfractional set-up errors and intrafractional organ motions during IMRT for head and neck tumors to define an appropriate planning target volume (PTV)- and planning organs at risk volume (PRV)-margins. Radiotherapy and Oncology, 2006, 78, 283-290.	0.6	84
9	Poly(vinyl alcohol) boosting therapeutic potential of <i>p</i> -boronophenylalanine in neutron capture therapy by modulating metabolism. Science Advances, 2020, 6, eaaz1722.	10.3	77
10	Development of High Boron Content Liposomes and Their Promising Antitumor Effect for Neutron Capture Therapy of Cancers. Bioconjugate Chemistry, 2013, 24, 124-132.	3.6	74
11	Block copolymer-boron cluster conjugate for effective boron neutron capture therapy of solid tumors. Journal of Controlled Release, 2017, 254, 1-9.	9.9	70
12	Spermidinium <i>closo</i> -dodecaborate-encapsulating liposomes as efficient boron delivery vehicles for neutron capture therapy. Chemical Communications, 2014, 50, 12325-12328.	4.1	56
13	Maleimide-functionalized closo-dodecaborate albumin conjugates (MID-AC): Unique ligation at cysteine and lysine residues enables efficient boron delivery to tumor for neutron capture therapy. Journal of Controlled Release, 2016, 237, 160-167.	9.9	56
14	A novel concept of treatment of diffuse or multiple pleural tumors by boron neutron capture therapy (BNCT). Radiotherapy and Oncology, 2008, 88, 192-195.	0.6	54
15	Biological Evaluation of Dodecaborate-Containing <scp>l</scp> -Amino Acids for Boron Neutron Capture Therapy. Journal of Medicinal Chemistry, 2012, 55, 6980-6984.	6.4	52
16	Importance of the Initial Volume of Parotid Glands in Xerostomia for Patients with Head and Neck Cancers Treated with IMRT. Japanese Journal of Clinical Oncology, 2005, 35, 375-379.	1.3	51
17	Synergistic Effects of Radiation and β-Lapachone in DU-145 Human Prostate Cancer CellsIn Vitro. Radiation Research, 2006, 165, 525-531.	1.5	51
18	Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects. Biomaterials, 2016, 104, 201-212.	11.4	51

MINORU SUZUKI

#	Article	lF	CITATIONS
19	Comparison of the pharmacokinetics between L-BPA and L-FBPA using the same administration dose and protocol: a validation study for the theranostic approach using [18F]-L-FBPA positron emission tomography in boron neutron capture therapy. BMC Cancer, 2016, 16, 859.	2.6	46
20	Boron neutron capture therapy for vulvar melanoma and genital extramammary Paget's disease with curative responses. Cancer Communications, 2018, 38, 1-10.	9.2	45
21	Feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma from a viewpoint of dose distribution analysis. International Journal of Radiation Oncology Biology Physics, 2006, 66, 1584-1589.	0.8	44
22	The Effects of Boron Neutron Capture Therapy on Liver Tumors and Normal Hepatocytes in Mice. Japanese Journal of Cancer Research, 2000, 91, 1058-1064.	1.7	42
23	Feasibility Study of the Simultaneous Integrated Boost (SIB) Method for Malignant Gliomas Using Intensity-modulated Radiotherapy (IMRT). Japanese Journal of Clinical Oncology, 2003, 33, 271-277.	1.3	40
24	Boron neutron capture therapy with bevacizumab may prolong the survival of recurrent malignant glioma patients: four cases. Radiation Oncology, 2014, 9, 6.	2.7	37
25	Evaluation of a Novel Boron-Containing \hat{I} ±-d-Mannopyranoside for BNCT. Cells, 2020, 9, 1277.	4.1	35
26	Pilot clinical study of boron neutron capture therapy for recurrent hepatic cancer involving the intra-arterial injection of a 10BSH-containing WOW emulsion. Applied Radiation and Isotopes, 2014, 88, 32-37.	1.5	33
27	Cyclic RGD-Functionalized <i>closo</i> -Dodecaborate Albumin Conjugates as Integrin Targeting Boron Carriers for Neutron Capture Therapy. Molecular Pharmaceutics, 2020, 17, 3740-3747.	4.6	32
28	DNA double-strand break induction in Ku80-deficient CHO cells following Boron Neutron Capture Reaction. Radiation Oncology, 2011, 6, 106.	2.7	30
29	Boron neuron capture therapy using epithermal neutrons for recurrent cancer in the oral cavity and cervical lymph node metastasis. Oncology Reports, 2007, 18, 861-6.	2.6	30
30	Intra-arterial administration of sodium borocaptate (BSH)/lipiodol emulsion delivers B-10 to liver tumors highly selectively for boron neutron capture therapy: experimental studies in the rat liver model. International Journal of Radiation Oncology Biology Physics, 2004, 59, 260-266.	0.8	29
31	Impact of accelerator-based boron neutron capture therapy (AB-BNCT) on the treatment of multiple liver tumors and malignant pleural mesothelioma. Radiotherapy and Oncology, 2009, 92, 89-95.	0.6	28
32	Radiosensitization effect by combination with paclitaxel in vivo, including the effect on intratumor quiescent cells. International Journal of Radiation Oncology Biology Physics, 2001, 50, 1063-1072.	0.8	27
33	Long-term outcome of cutaneous melanoma patients treated with boron neutron capture therapy (BNCT). Journal of Radiation Research, 2020, 61, 945-951.	1.6	27
34	Boron Neutron Capture Therapy of Malignant Gliomas. Progress in Neurological Surgery, 2018, 32, 48-56.	1.3	26
35	A case of radiation-induced osteosarcoma treated effectively by boron neutron capture therapy. Radiation Oncology, 2014, 9, 237.	2.7	25
36	Gadolinium-loaded chitosan nanoparticles for neutron-capture therapy: Influence of micrometric properties of the nanoparticles on tumor-killing effect. Applied Radiation and Isotopes, 2014, 88, 109-113.	1.5	25

#	Article	IF	CITATIONS
37	Boron nitride (10BN) a prospective material for treatment of cancer by boron neutron capture therapy (BNCT). Materials Letters, 2020, 259, 126832.	2.6	25
38	Impact of intra-arterial administration of boron compounds on dose–volume histograms in boron neutron capture therapy for recurrent head-and-neck tumors. International Journal of Radiation Oncology Biology Physics, 2006, 66, 1523-1527.	0.8	23
39	A Preliminary Experimental Study of Boron Neutron Capture Therapy for Malignant Tumors Spreading in Thoracic Cavity. Japanese Journal of Clinical Oncology, 2007, 37, 245-249.	1.3	23
40	Synthesis and in vitro evaluation of thiododecaborated α, α- cycloalkylamino acids for the treatment of malignant brain tumors by boron neutron capture therapy. Amino Acids, 2014, 46, 2715-2720.	2.7	23
41	Phase I Study of Weekly Docetaxel Infusion and Concurrent Radiation Therapy for Head and Neck Cancer. Japanese Journal of Clinical Oncology, 2003, 33, 297-301.	1.3	22
42	Dosimetric study of boron neutron capture therapy with borocaptate sodium (BSH)/lipiodol emulsion (BSH/lipiodol-BNCT) for treatment of multiple liver tumors. International Journal of Radiation Oncology Biology Physics, 2004, 58, 892-896.	0.8	22
43	Proposal for determining absolute biological effectiveness of boron neutron capture therapy—the effect of 10B(n,α)7Li dose can be predicted from the nucleocytoplasmic ratio or the cell size. Journal of Radiation Research, 2019, 60, 29-36.	1.6	22
44	Reirradiation for locally recurrent lung cancer in the chest wall with boron neutron capture therapy (BNCT). International Cancer Conference Journal, 2012, 1, 235-238.	0.5	19
45	Boron Neutron Capture Therapy for High-Grade Skull-Base Meningioma. Journal of Neurological Surgery, Part B: Skull Base, 2018, 79, S322-S327.	0.8	19
46	Fructose-functionalized polymers to enhance therapeutic potential of p-boronophenylalanine for neutron capture therapy. Journal of Controlled Release, 2021, 332, 184-193.	9.9	19
47	Boron Neutron Capture Therapy Combined with Early Successive Bevacizumab Treatments for Recurrent Malignant Gliomas – A Pilot Study. Neurologia Medico-Chirurgica, 2018, 58, 487-494.	2.2	18
48	Treatment outcomes and dose-volume histogram analysis of simultaneous integrated boost method for malignant gliomas using intensity-modulated radiotherapy. International Journal of Clinical Oncology, 2008, 13, 48-53.	2.2	17
49	Biodistribution of 10B in a rat liver tumor model following intra-arterial administration of sodium borocaptate (BSH)/degradable starch microspheres (DSM) emulsion. Applied Radiation and Isotopes, 2004, 61, 933-937.	1.5	16
50	Evaluation of Micronucleus Induction in Lymphocytes of Patients Following Boron-Neutron-Capture-Therapy: A Comparison with Thyroid Cancer Patients treated with radioiodine. Journal of Radiation Research, 2007, 48, 197-204.	1.6	16
51	DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV. Radiation and Environmental Biophysics, 2016, 55, 89-94.	1.4	16
52	Reactor-based boron neutron capture therapy for 44 cases of recurrent and refractory high-grade meningiomas with long-term follow-up. Neuro-Oncology, 2022, 24, 90-98.	1.2	16
53	Conjugation of Phenylboronic Acid Moiety through Multistep Organic Transformations on Nanodiamond Surface for an Anticancer Nanodrug for Boron Neutron Capture Therapy. Bulletin of the Chemical Society of Japan, 2021, 94, 2302-2312.	3.2	16
54	Construction of Boronophenylalanine-Loaded Biodegradable Periodic Mesoporous Organosilica Nanoparticles for BNCT Cancer Therapy. International Journal of Molecular Sciences, 2021, 22, 2251.	4.1	15

MINORU SUZUKI

#	Article	IF	CITATIONS
55	Boron neutron capture therapy (BNCT) as a new approach for clear cell sarcoma (CCS) treatment: Trial using a lung metastasis model of CCS. Applied Radiation and Isotopes, 2015, 106, 195-201.	1.5	14
56	Proteomic analysis of cellular response induced by boron neutron capture reaction in human squamous cell carcinoma SAS cells. Applied Radiation and Isotopes, 2015, 106, 213-219.	1.5	14
57	Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT. Journal of the Korean Physical Society, 2015, 67, 76-81.	0.7	13
58	Feasibility evaluation of neutron capture therapy for hepatocellular carcinoma using selective enhancement of boron accumulation in tumour with intra-arterial administration of boron-entrapped water-in-oil-in-water emulsion. Applied Radiation and Isotopes, 2011, 69, 1854-1857.	1.5	12
59	Boron neutron capture therapy as new treatment for clear cell sarcoma: Trial on different animal model. Applied Radiation and Isotopes, 2014, 88, 59-63.	1.5	12
60	Design, Synthesis, and Biological Evaluation of Boron-Containing Macrocyclic Polyamines and Their Zinc(II) Complexes for Boron Neutron Capture Therapy. Journal of Medicinal Chemistry, 2021, 64, 8523-8544.	6.4	12
61	The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model. PLoS ONE, 2015, 10, e0136981.	2.5	12
62	Evaluating the Usefulness of a Novel 10B-Carrier Conjugated With Cyclic RGD Peptide in Boron Neutron Capture Therapy. World Journal of Oncology, 2012, 3, 103-112.	1.5	12
63	Responses of Total and Quiescent Cell Populations in Solid Tumors to Boron and Gadolinium Neutron Capture Reaction Using Neutrons with Two Different Energy Spectra. Japanese Journal of Cancer Research, 1998, 89, 81-88.	1.7	10
64	Cerebrospinal fluid dissemination of high-grade gliomas following boron neutron capture therapy occurs more frequently in the small cell subtype of IDH1R132H mutation-negative glioblastoma. Journal of Neuro-Oncology, 2017, 133, 107-118.	2.9	10
65	Novel Hyaluronan Formulation Enhances the Efficacy of Boron Neutron Capture Therapy for Murine Mesothelioma. Anticancer Research, 2016, 36, 907-11.	1.1	10
66	Additive Effects of Radiation and Docetaxel on Murine SCCVII TumorsIn Vivo: Special Reference to Changes in the Cell Cycle. Radiation Research, 2003, 159, 799-804.	1.5	9
67	Cationized gelatin-HVJ envelope with sodium borocaptate improved the BNCT efficacy for liver tumors in vivo. Radiation Oncology, 2011, 6, 8.	2.7	9
68	Boron neutron capture therapy (BNCT) selectively destroys human clear cell sarcoma in mouse model. Applied Radiation and Isotopes, 2013, 73, 96-100.	1.5	9
69	Detection of γH2AX foci in mouse normal brain and brain tumor after boron neutron capture therapy. Reports of Practical Oncology and Radiotherapy, 2016, 21, 108-112.	0.6	9
70	Effect of oxygen pressure during incubation with a10B-carrier on10B uptake capacity of culturedp53 wild-type andmutatedtumor cells: dependency onp53status of tumor cells and types of10B-carriers. International Journal of Radiation Biology, 2016, 92, 187-194.	1.8	9
71	Preclinical study of boron neutron capture therapy for bone metastasis using human breast cancer cell lines. Applied Radiation and Isotopes, 2020, 165, 109257.	1.5	9
72	Tumor-targeting hyaluronic acid/fluorescent carborane complex for boron neutron capture therapy. Biochemical and Biophysical Research Communications, 2021, 559, 210-216.	2.1	9

#	Article	IF	CITATIONS
73	Tumor vasculature-targeted 10B delivery by an Annexin A1-binding peptide boosts effects of boron neutron capture therapy. BMC Cancer, 2021, 21, 72.	2.6	9
74	Augmentation in Chemosensitivity of Intratumor Quiescent Cells by Combined Treatment with Nicotinamide and Mild Hyperthermia. Japanese Journal of Cancer Research, 1997, 88, 770-777.	1.7	8
75	Effects of Bioreductive Agents, Tirapazamine and Mitomycin C, on Quiescent Cell Populations in Solid Tumors, Evaluated by Micronucleus Assay. Japanese Journal of Cancer Research, 1997, 88, 907-914.	1.7	8
76	Usefulness of Tirapazamine as a Combined Agent in Chemoradiation and Thermo-chemoradiation Therapy at Mild Temperatures: Reference to the Effect on Intratumor Quiescent Cells. Japanese Journal of Cancer Research, 2000, 91, 566-572.	1.7	8
77	Influence of the particle size of gadolinium-loaded chitosan nanoparticles on their tumor-killing effect in neutron capture therapy in vitro. Applied Radiation and Isotopes, 2020, 164, 109270.	1.5	8
78	Fluorescent boron carbide quantum dots synthesized with a low-temperature solvothermal approach for boron neutron capture therapy. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 132, 114766.	2.7	8
79	Effect of Electroporation on Cell Killing by Boron Neutron Capture Therapy Using Borocaptate Sodium (10B-BSH). Japanese Journal of Cancer Research, 1998, 89, 1352-1357.	1.7	7
80	Repair of potentially lethal damage by total and quiescent cells in solid tumors following a neutron capture reaction. Journal of Cancer Research and Clinical Oncology, 1999, 125, 609-614.	2.5	7
81	Boron neutron capture therapy for clear cell sarcoma. Applied Radiation and Isotopes, 2020, 166, 109324.	1.5	7
82	Boron Neutron Capture Therapy Study of 10B Enriched Nanostructured Boron Carbide Against Cervical Cancer and Glioblastoma Cell Line. Journal of Cluster Science, 2021, 32, 221-225.	3.3	7
83	Extracellular Release of HMGB1 as an Early Potential Biomarker for the Therapeutic Response in a Xenograft Model of Boron Neutron Capture Therapy. Biology, 2022, 11, 420.	2.8	7
84	Comparison of outcomes between overlapping structure-based and non-overlapping structure-based optimization for simultaneous integrated boost IMRT for malignant gliomas. International Journal of Clinical Oncology, 2004, 9, 491-497.	2.2	6
85	Clinical Effectiveness of Boron Neutron Capture Therapy for a Recurrent Malignant Peripheral Nerve Sheath Tumor in the Mediastinum. Journal of Thoracic Oncology, 2010, 5, 2037-2038.	1.1	6
86	Usefulness of combination with both continuous administration of hypoxic cytotoxin and mild temperature hyperthermia in boron neutron capture therapy in terms of local tumor response and lung metastatic potential. International Journal of Radiation Biology, 2019, 95, 1708-1717.	1.8	6
87	An attempt to improve the therapeutic effect of boron neutron capture therapy using commonly employed 10B-carriers based on analytical studies on the correlation among quiescent tumor cell characteristics, tumor heterogeneity and cancer stemness. Journal of Radiation Research, 2020, 61, 876-885.	1.6	6
88	Effects of Boron Neutron Capture Therapy Using Borocaptate Sodium in Combination with a Tumor-selective Vasoactive Agent in Mice. Japanese Journal of Cancer Research, 1998, 89, 334-340.	1.7	5
89	A Simple and Rapid Method for Measurement of 10B-para-Boronophenylalanine in the Blood for Boron Neutron Capture Therapy Using Fluorescence Spectrophotometry. Journal of Radiation Research, 2009, 50, 377-382.	1.6	5
90	Localized dose delivering by ion beam irradiation for experimental trial of establishing brain necrosis model. Applied Radiation and Isotopes, 2015, 105, 32-34.	1.5	5

#	Article	IF	CITATIONS
91	Carboxyboranylamino ethanol: unprecedented discovery of boron agents for neutron capture therapy in cancer treatment. Chemical Communications, 2021, 57, 10174-10177.	4.1	5
92	BNCT for primary synovial sarcoma. Applied Radiation and Isotopes, 2021, 169, 109407.	1.5	5
93	HIF-1α affects sensitivity of murine squamous cell carcinoma to boron neutron capture therapy with BPA. International Journal of Radiation Biology, 2021, 97, 1441-1449.	1.8	5
94	The Effect of <i>p53</i> Status on Radio-Sensitivity of Quiescent Tumor Cell Population Irradiated With Î ³ -Rays at Various Dose Rates. Journal of Clinical Medicine Research, 2018, 10, 815-821.	1.2	5
95	Suppression of Tumor Growth in a Rabbit Hepatic Cancer Model by Boron Neutron Capture Therapy With Liposomal Boron Delivery Systems. In Vivo, 2021, 35, 3125-3135.	1.3	5
96	Changes in the Sensitivity of Intratumor Cells during Fractionated Tirapazamine Administration. Japanese Journal of Cancer Research, 2000, 91, 731-736.	1.7	4
97	Potential of boron neutron capture therapy (BNCT) for malignant peripheral nerve sheath tumors (MPNST). Applied Radiation and Isotopes, 2015, 106, 220-225.	1.5	4
98	Effect of Tirapazamine, Metformin or Mild Hyperthermia on Recovery From Radiation-Induced Damage in Pimonidazole-Unlabeled Quiescent Tumor Cells. World Journal of Oncology, 2017, 8, 137-146.	1.5	4
99	An attempt to enhance chemosensitivity of quiescent cell populations in solid tumors by combined treatment with nicotinamide and carbogen. Journal of Cancer Research and Clinical Oncology, 1996, 122, 533-540.	2.5	3
100	Boron Neutron Capture Therapy. Radioisotopes, 2012, 61, 209-222.	0.2	3
101	Single-dose toxicity study by intra-arterial injection of 10BSH entrapped water-in-oil-in-water emulsion for boron neutron capture therapy to hepatocellular carcinoma. Applied Radiation and Isotopes, 2020, 163, 109202.	1.5	3
102	Reevaluation of CBE value of BPA for hepatocytes. Applied Radiation and Isotopes, 2020, 161, 109159.	1.5	3
103	Quantitative autoradiography in boron neutron capture therapy considering the particle ranges in the samples. Physica Medica, 2021, 82, 306-320.	0.7	3
104	Improving the spatial resolution of a pixelated LaBr3(Ce) scintillator coupled with a multi-pixel photon counter array for boron neutron capture therapy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 992. 165026.	1.6	3
105	Radiosensitivity and Capacity to Recover from Radiation-Induced Damage in Pimonidazole-Unlabeled Intratumor Quiescent Cells Depend on p53 Status. World Journal of Oncology, 2011, 2, 1-9.	1.5	3
106	Efficacy of Boron Neutron Capture Therapy in Primary Central Nervous System Lymphoma: In Vitro and In Vivo Evaluation. Cells, 2021, 10, 3398.	4.1	3
107	Effects of p53 Status of Tumor Cells and Combined Treatment With Mild Hyperthermia, Wortmannin or Caffeine on Recovery From Radiation-Induced Damage. World Journal of Oncology, 2019, 10, 132-141.	1.5	2
108	The Effect of p53 Status of Tumor Cells on Radiosensitivity of Irradiated Tumors With Carbon-Ion Beams Compared With γ-Rays or Reactor Neutron Beams. World Journal of Oncology, 2015, 6, 398-409.	1.5	2

MINORU SUZUKI

#	Article	IF	CITATIONS
109	Persistent elevation of lysophosphatidylcholine promotes radiation brain necrosis with microglial recruitment by P2RX4 activation. Scientific Reports, 2022, 12, .	3.3	2
110	Measurement of the thermal neutron distribution in a water phantom using a cyclotron based neutron source for boron neutron capture therapy. , 2009, , .		1
111	Development of real-time thermal neutron monitor array for boron neutron capture therapy. Therapeutic Radiology and Oncology, 2018, 2, 51-51.	0.2	1
112	Design, Synthesis and Biological Evaluation of Boron ontaining Macrocyclic Polyamine Dimers and Their Zinc(II) Complexes for Boron Neutron Capture Therapy. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	1
113	Analysis of boron neutron capture reaction sensitivity using Monte Carlo simulation and proposal of a new dosimetry index in boron neutron capture therapy. Journal of Radiation Research, O, , .	1.6	1
114	Development of thermal neutron flux monitor using small scintillator array coupled with quartz fibers for Boron Neutron Capture Therapy. , 2011, , .		0
115	Development of two dimensional thermal neutron flux monitor using multi-wire proportional counter for boron neutron capture therapy. , 2012, , .		Ο
116	Characteristics of neutron capture therapy in terms of biology for tumor therapy and radiation oncologyï¼^Review Article). Journal of Japanese Society of Oral Oncology, 2016, 28, 134-147.	0.1	0
117	Effect of a change in reactor power on response of murine solid tumors in vivo, referring to impact on quiescent tumor cell population. International Journal of Radiation Biology, 2019, 95, 635-645.	1.8	Ο
118	Boron neutron capture therapy in patients with recurrent head and neck cancers who have no other treatment options Journal of Clinical Oncology, 2014, 32, 6046-6046.	1.6	0
119	Boron neutron capture therapy in non-SCC patients with intractable head and neck malignancies who have no other treatment options Journal of Clinical Oncology, 2016, 34, e17507-e17507.	1.6	Ο
120	BNCT for Head and Neck Cancer—History at Our Institution—. Practica Otologica, Supplement, 2017, 149, 227-240.	0.0	0
121	Current status and potential of neutron capture therapy as a new treatment option for malignant soft tissue tumors. Drug Delivery System, 2020, 35, 137-145.	0.0	О