Scott P Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4991545/publications.pdf

Version: 2024-02-01

87	3,227	32	54
papers	citations	h-index	g-index
89	89	89	2116
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genomic and physiological mechanisms underlying skin plasticity during water to air transition in an amphibious fish. Journal of Experimental Biology, 2021, 224, .	1.7	10
2	lonâ€poor water and dietary salt deprivation upregulate the ghrelinergic system in the goldfish () Tj ETQq0 0 0 r	gBT <u>/</u> Overl	ock 10 Tf 50 7
3	Mummichog gill and operculum exhibit functionally consistent claudin-10 paralog profiles and Claudin-10c hypersaline response. Biology Open, 2021, 10, .	1.2	6
4	C-type natriuretic peptide regulates the molecular components of the rainbow trout gill epithelium tight junction complex. Peptides, 2020, 124, 170211.	2.4	6
5	Claudins of sea lamprey (<scp><i>Petromyzon marinus</i></scp>) – organâ€specific expression and transcriptional responses to water of varying ion content. Journal of Fish Biology, 2020, 96, 768-781.	1.6	9
6	Effects of copper on a reconstructed freshwater rainbow trout gill epithelium: Paracellular and intracellular aspects. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 230, 108705.	2.6	2
7	Tracking adiponectin biodistribution via fluorescence molecular tomography indicates increased vascular permeability after streptozotocin-induced diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E760-E772.	3.5	5
8	Septate junction in the distal ileac plexus of larval lepidopteran <i>Trichoplusia ni</i> paracellular permeability during ion transport reversal. Journal of Experimental Biology, 2019, 222, .	1.7	11
9	The mineralocorticoid receptor contributes to barrier function of a model fish gill epithelium. Journal of Experimental Biology, 2019, 222, .	1.7	4
10	Impact of salt-contaminated freshwater on osmoregulation and tracheal gill function in nymphs of the mayfly Hexagenia rigida. Aquatic Toxicology, 2019, 211, 92-104.	4.0	17
11	A lethal fungal pathogen directly alters tight junction proteins in the skin of a susceptible amphibian. Journal of Experimental Biology, 2018, 222, .	1.7	6
12	Tricellular tight junction-associated angulins in the gill epithelium of rainbow trout. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R312-R322.	1.8	8
13	Identification of the septate junction protein gliotactin in the mosquito, <i>Aedes aegypti</i> evidence for a role in increased paracellular permeability in larvae. Journal of Experimental Biology, 2017, 220, 2354-2363.	1.7	11
14	Salinity alters snakeskin and mesh transcript abundance and permeability in midgut and Malpighian tubules of larval mosquito, Aedes aegypti. Comparative Biochemistry and Physiology Part A, Molecular & Emps; Integrative Physiology, 2017, 205, 58-67.	1.8	20
15	Claudin tight junction proteins in rainbow trout (Oncorhynchus mykiss) skin: Spatial response to elevated cortisol levels. General and Comparative Endocrinology, 2017, 240, 214-226.	1.8	11
16	Thermal acclimation mitigates cold-induced paracellular leak from the Drosophila gut. Scientific Reports, 2017, 7, 8807.	3.3	48
17	Strategies of ionoregulation in the freshwater nymph of the mayfly (<i>Hexagenia rigida</i>). Journal of Experimental Biology, 2017, 220, 3997-4006.	1.7	13

A role for tight junction-associated MARVEL proteins in larval sea lamprey (<i>Petromyzon) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (1.7 rg) for tight junction-associated MARVEL proteins in larval sea lamprey (<i->Petromyzon) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (1.7 rg) for tight junction-associated MARVEL proteins in larval sea lamprey (<i->Petromyzon) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (1.7 rg) for tight junction-associated MARVEL proteins in larval sea lamprey (<i->Petromyzon) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (1.7 rg) for tight junction-associated MARVEL proteins in larval sea lamprey (<i->Petromyzon) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (1.7 rg) for tight junction-associated MARVEL proteins in larval sea lamprey (<i->Petromyzon) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (1.7 rg) for tight junction-associated MARVEL proteins in larval sea lamprey (<i->Petromyzon) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (1.7 rg) for tight junction-associated MARVEL proteins in larval sea lamprey (<i->Petromyzon) Tj ETQq0 0 0 rg Fg 70 rg (1.7 rg) for tight junction-associated MARVEL proteins in larval sea lamprey (<i->Petromyzon) Tj ETQq0 0 0 rg Fg 70 rg (1.7 rg) for tight junction-associated MARVEL proteins in larval sea lamprey (<i->Petromyzon) Tj ETQq0 0 rg (1.7 rg) for tight junction-associated MARVEL proteins in larval sea lamprey (<i->Petromyzon Tj ETQq0 0 rg (1.7 rg) for tight junction-associated MARVEL proteins in larval sea lamprey (<i->Petromyzon Tj ETQq0 0 rg (1.7 rg) for tight junction-associated MARVEL proteins in larval sea lamprey (<i->Petromyzon Tj ETQq0 0 rg (1.7 rg) for tight junction-associated MARVEL proteins in larval sea lamprey (<i->Petromyzon Tj ETQq0 rg (1.7 rg) for tight junction-associated MARVEL proteins in larval sea lamprey (<i->Petromyzon Tj ETQq0 rg (1.7 rg) for tight junction-associated (<i->Petromyzon Tj ETQq0 rg (1.7 rg) for tight junction-associated (<i->Petromyzon Tj ETQq0 rg (<i->Petromyzon Tj ETQq0 rg (<i->Petromyzon Tj ETQq0 rg (<i->Petromyzon Tj ETQ

18

#	Article	IF	Citations
19	Claudin-10 isoform expression and cation selectivity change with salinity in salt-secreting epithelia of F. heteroclitus. Journal of Experimental Biology, 2017, 221, .	1.7	21
20	Transendothelial movement of adiponectin is restricted by glucocorticoids. Journal of Endocrinology, 2017, 234, 101-114.	2.6	8
21	Claudin-31 contributes to corticosteroid-induced alterations in the barrier properties of the gill epithelium. Molecular and Cellular Endocrinology, 2017, 439, 457-466.	3.2	13
22	Claudin-8d is a cortisol-responsive barrier protein in the gill epithelium of trout. Journal of Molecular Endocrinology, 2017, 59, 299-310.	2.5	13
23	Dietary salt loading and ion-poor water exposure provide insight into the molecular physiology of the rainbow trout gill epithelium tight junction complex. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2016, 186, 739-757.	1.5	9
24	The liquorice root derivative glycyrrhetinic acid can ameliorate ionoregulatory disturbance in rainbow trout (Oncorhynchus mykiss) abruptly exposed to ion-poor water. Comparative Biochemistry and Physiology Part A, Molecular & Engrative Physiology, 2016, 199, 120-129.	1.8	8
25	The response of claudin-like transmembrane septate junction proteins to altered environmental ion levels in the larval mosquito Aedes aegypti. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2016, 186, 589-602.	1.5	14
26	Procedures for the reconstruction, primary culture and experimental use of rainbow trout gill epithelia. Nature Protocols, 2016, 11, 490-498.	12.0	28
27	Occluding junctions of invertebrate epithelia. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2016, 186, 17-43.	1.5	53
28	Effect of the liquorice root derivatives on salt and water balance in a teleost fish, rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part A, Molecular & Discretive Physiology, 2015, 180, 86-97.	1.8	10
29	Claudins in a primary cultured puffer fish (Tetraodon nigroviridis) gill epithelium model alter in response to acute seawater exposure. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2015, 189, 91-101.	1.8	7
30	Altered Transendothelial Transport of Hormones as a Contributor to Diabetes. Diabetes and Metabolism Journal, 2014, 38, 92.	4.7	9
31	Claudin-6, -10d, and -10e contribute to seawater acclimation in the euryhaline puffer fish <i>Tetraodon nigroviridis</i> . Journal of Experimental Biology, 2014, 217, 1758-67.	1.7	29
32	Tight junction protein gene expression patterns and changes in transcript abundance during development of model fish gill epithelia. Journal of Experimental Biology, 2014, 217, 1667-81.	1.7	34
33	Claudins in teleost fishes. Tissue Barriers, 2013, 1, e25391.	3.2	92
34	Tissue specific ionomotive enzyme activity and K+ reabsorption reveal the rectum as an important ionoregulatory organ in larval <i>Chironomous riparius</i> exposed to varying salinity. Journal of Experimental Biology, 2013, 216, 3637-48.	1.7	17
35	A role for tricellulin in the regulation of gill epithelium permeability. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R1139-R1148.	1.8	22
36	Permeability properties of the teleost gill epithelium under ion-poor conditions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R727-R739.	1.8	44

3

#	Article	IF	CITATIONS
37	Tight junctions, tight junction proteins and paracellular permeability across the gill epithelium of fishes: A review. Respiratory Physiology and Neurobiology, 2012, 184, 269-281.	1.6	173
38	Effects of elevated circulating cortisol levels on hydromineral status and gill tight junction protein abundance in the stenohaline goldfish. General and Comparative Endocrinology, 2012, 175, 277-283.	1.8	30
39	Permeability properties and occludin expression in a primary cultured model gill epithelium from the stenohaline freshwater goldfish. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2011, 181, 487-500.	1.5	6
40	Exogenous GDF9 but not Activin A, BMP15 or $TGF\hat{l}^2$ alters tight junction protein transcript abundance in zebrafish ovarian follicles. General and Comparative Endocrinology, 2011, 171, 211-217.	1.8	29
41	Effect of cortisol on permeability and tight junction protein transcript abundance in primary cultured gill epithelia from stenohaline goldfish and euryhaline trout. General and Comparative Endocrinology, 2011, 172, 494-504.	1.8	70
42	Epithelial remodeling and claudin mRNA abundance in the gill and kidney of puffer fish (Tetraodon) Tj ETQq0 0 (Biochemical, Systemic, and Environmental Physiology, 2011, 181, 219-238.) rgBT /Ov 1.5	erlock 10 Tf 5 49
43	The physiological response of larval Chironomus riparius (Meigen) to abrupt brackish water exposure. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2011, 181, 343-352.	1.5	41
44	Glucocorticoid and mineralocorticoid receptors regulate paracellular permeability in a primary cultured gill epithelium. Journal of Experimental Biology, 2011, 214, 2308-2318.	1.7	61
45	Claudins in a Primary Cultured Puffer Fish (Tetraodon nigroviridis) Gill Epithelium. Methods in Molecular Biology, 2011, 762, 179-194.	0.9	5
46	Spatial and salinity-induced alterations in claudin-3 isoform mRNA along the gastrointestinal tract of the pufferfish Tetraodon nigroviridis. Comparative Biochemistry and Physiology Part A, Molecular & Emps. Integrative Physiology, 2010, 155, 154-163.	1.8	18
47	Tight junction proteins in zebrafish ovarian follicles: Stage specific mRNA abundance and response to 17l²-estradiol, human chorionic gonadotropin, and maturation inducing hormone. General and Comparative Endocrinology, 2010, 168, 388-400.	1.8	42
48	Cortisol differentially alters claudin isoforms in cultured puffer fish gill epithelia. Molecular and Cellular Endocrinology, 2010, 317, 120-126.	3.2	57
49	Cortisol reduces paracellular permeability and increases occludin abundance in cultured trout gill epithelia. Molecular and Cellular Endocrinology, 2010, 323, 232-238.	3.2	49
50	Occludin and hydromineral balance in Xenopus laevis. Journal of Experimental Biology, 2009, 212, 287-296.	1.7	11
51	Occludin expression in goldfish held in ion-poor water. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2009, 179, 145-154.	1.5	36
52	Claudin-8 and -27 tight junction proteins in puffer fish Tetraodon nigroviridis acclimated to freshwater and seawater. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2009, 179, 419-431.	1.5	42
53	Chapter 9 The Endocrine Regulation of Food Intake. Fish Physiology, 2009, 28, 421-465.	0.8	37
54	Cortisol stimulates calcium transport across cultured gill epithelia from freshwater rainbow trout. In Vitro Cellular and Developmental Biology - Animal, 2008, 44, 96-104.	1.5	18

#	Article	IF	CITATIONS
55	Claudin-3 tight junction proteins inTetraodon nigroviridis: cloning, tissue-specific expression, and a role in hydromineral balance. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1638-R1647.	1.8	59
56	Occludin immunolocalization and protein expression in goldfish. Journal of Experimental Biology, 2008, 211, 1524-1534.	1.7	65
57	Prolactin-releasing peptide, food intake, and hydromineral balance in goldfish. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R1474-R1481.	1.8	33
58	Neuropeptides and the control of food intake in fish. General and Comparative Endocrinology, 2005, 142, 3-19.	1.8	511
59	Response of developing cultured freshwater gill epithelia to gradual apical media dilution and hormone supplementation. The Journal of Experimental Zoology, 2004, 301A, 867-881.	1.4	10
60	Larval Development of Silver Sea Bream (Sparus sarba): Ontogeny of RNA-DNA Ratio, GH, IGF-I, and Na + -K + -ATPase. Marine Biotechnology, 2003, 5, 79-91.	2.4	31
61	DILUTE CULTURE MEDIA AS AN ENVIRONMENTAL OR PHYSIOLOGICAL SIMULANT IN CULTURED GILL EPITHELIA FROM FRESHWATER RAINBOW TROUT. In Vitro Cellular and Developmental Biology - Animal, 2003, 39, 21.	1.5	7
62	Effects of cortisol and prolactin on Na+ and Cl- transport in cultured branchial epithelia from FW rainbow trout. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R1305-R1316.	1.8	35
63	Cultured gill epithelia as models for the freshwater fish gill. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1566, 72-83.	2.6	87
64	Prolactin effects on cultured pavement cell epithelia and pavement cell plus mitochondria-rich cell epithelia from freshwater rainbow trout gills. General and Comparative Endocrinology, 2002, 128, 44-56.	1.8	29
65	Studies on lipid metabolism in trout (Oncorhynchus mykiss) branchial cultures. The Journal of Experimental Zoology, 2002, 293, 683-692.	1.4	12
66	Physiological responses to acute silver exposure in the freshwater crayfish (<i>Cambarus diogenes) Tj ETQq0 0 0</i>	rgBT /Ove	erlock 10 Tf 5
67	Cultured Gill Epithelia from Freshwater Tilapia (Oreochromis niloticus): Effect of Cortisol and Homologous Serum Supplements from Stressed and Unstressed Fish. Journal of Membrane Biology, 2002, 190, 29-42.	2.1	46
68	Effect of cortisol on the physiology of cultured pavement cell epithelia from freshwater trout gills. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R811-R820.	1.8	48
69	The Physiological Effects of 3,5′,3′-Triiodo-l-thyronine Alone or Combined with Cortisol on Cultured Pavement Cell Epithelia from Freshwater Rainbow Trout Gills. General and Comparative Endocrinology, 2001, 123, 280-294.	1.8	27
70	The cultured branchial epithelium of the rainbow trout as a model for diffusive fluxes of ammonia across the fish gill. Journal of Experimental Biology, 2001, 204, 4115-4124.	1.7	20
71	A maxi Cl- channel in cultured pavement cells from the gills of the freshwater rainbow trout Oncorhynchus mykiss. Journal of Experimental Biology, 2001, 204, 1783-94.	1.7	19
72	The cultured branchial epithelium of the rainbow trout as a model for diffusive fluxes of ammonia across the fish gill. Journal of Experimental Biology, 2001, 204, 4115-24.	1.7	13

#	Article	lF	CITATIONS
73	Effect of salinity and ration size on macrophage phagocytosis in juvenile black sea bream (Mylio) Tj ETQq $1\ 1$	0.784314 rgBT 0.7	/Overlock
74	Procedures for the preparation and culture of 'reconstructed' rainbow trout branchial epithelia. Cytotechnology, 2000, 22, 153-163.	0.7	67
75	Hypercortisolemia does not affect the branchial osmoregulatory responses of the marine teleost Sparus sarba. Life Sciences, 2000, 66, 1435-1444.	4.3	14
76	Transport properties of cultured branchial epithelia from freshwater rainbow trout: a novel preparation with mitochondria-rich cells. Journal of Experimental Biology, 2000, 203, 1523-37.	1.7	55
77	The response of sea bream following abrupt hyposmotic exposure. Journal of Fish Biology, 1999, 55, 732-750.	1.6	68
78	Haloplasticity of black seabream (Mylio macrocephalus): Hypersaline to freshwater acclimation. The Journal of Experimental Zoology, 1999, 283, 226-241.	1.4	94
79	Cellular and Biochemical Characterization of Hyposmotic Adaptation in a Marine Teleost, Sparus sarba. Zoological Science, 1999, 16, 505-514.	0.7	29
80	Effects of Prolactin and Growth Hormone on Strategies of Hypoosmotic Adaptation in a Marine Teleost, Sparus sarba. General and Comparative Endocrinology, 1999, 113, 9-22.	1.8	60
81	Hormonal modulation of branchial Na+-K+-ATPase subunit mRNA in a marine teleost Sparus sarba. Life Sciences, 1999, 64, 1819-1829.	4.3	18
82	Alterations in Na+–K+–ATPase activity and gill chloride cell morphometrics of juvenile black sea bream (Mylio macrocephalus) in response to salinity and ration size. Aquaculture, 1999, 172, 351-367.	3.5	31
83	Effects of GH, prolactin and cortisol on hepatic heat shock protein 70 expression in a marine teleost Sparus sarba. Journal of Endocrinology, 1999, 161, 413-421.	2.6	55
84	The response of sea bream following abrupt hyposmotic exposure. Journal of Fish Biology, 1999, 55, 732-750.	1.6	5
85	Stimulation of macrophage phagocytosis and lymphocyte count by exogenous prolactin administration in silver sea bream (Sparus sarba) adapted to hyper- and hypo-osmotic salinities. Veterinary Immunology and Immunopathology, 1998, 61, 387-391.	1.2	26
86	Effect of injected growth hormone on phagocytosis in silver sea bream (Sparus sarba) adapted to hyper- and hypo-osmotic salinities. Fish and Shellfish Immunology, 1997, 7, 515-517.	3.6	27
87	Effects of salinity and nutritional status on growth and metabolism of Spams sarba in a closed seawater system. Aquaculture, 1995, 135, 229-238.	3.5	151