Ali Doostmohammadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/499148/publications.pdf

Version: 2024-02-01

43 papers

966 citations 15 h-index 30 g-index

43 all docs

43 docs citations

43 times ranked 1375 citing authors

#	Article	IF	CITATIONS
1	Mechanical behaviour, hybridisation and osteoblast activities of novel baghdadite/PCL-graphene nanocomposite scaffold: viability, cytotoxicity and calcium activity. Materials Technology, 2022, 37, 472-485.	3.0	6
2	Plasma electrolytic oxidation (PEO) coating to enhance in vitro corrosion resistance of AZ91 magnesium alloy coated with polydimethylsiloxane (PDMS). Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	3
3	Improvement of biological and corrosion behavior of 316 L stainless steel using PDMS-Ag doped Willemite nanocomposite coating. Progress in Organic Coatings, 2022, 165, 106733.	3.9	8
4	Molecularly imprinted polymer (MIP) based core-shell microspheres for bacteria isolation. Polymer, 2022, 251, 124917.	3.8	9
5	<i>In vitro</i> bioactivity of baghdadite-coated PCL –graphene nanocomposite scaffolds: mechanism of baghdadite and apatite formation. Materials Technology, 2021, 36, 761-770.	3.0	6
6	Highly conductive multi-walled carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) nanocomposite for microfluidic applications. Journal of Composite Materials, 2021, 55, 1799-1810.	2.4	3
7	Improvement in mechanical and biological performance of porous baghdadite scaffold by applying chitosan coating. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	7
8	Integration of microfluidic sample preparation with PCR detection to investigate the effects of simultaneous DNA-Inhibitor separation and DNA solution exchange. Analytica Chimica Acta, 2021, 1160, 338449.	5.4	5
9	Silver nanowire-embedded PDMS with high electrical conductivity: nanowires synthesis, composite processing and electrical analysis. Materials Today Chemistry, 2021, 21, 100496.	3.5	18
10	Conventional and microfluidic methods for airborne virus isolation and detection. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111962.	5.0	10
11	Synthesis of nanostructured hardystonite (HT) bioceramic coated on titanium alloy (Ti-6Al-4V) substrate and assessment of its corrosion behavior, bioactivity and cytotoxicity. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	8
12	Nanopore sensors for viral particle quantification: current progress and future prospects. Bioengineered, 2021, 12, 9189-9215.	3.2	10
13	In vitro evaluation of diopside/baghdadite bioceramic scaffolds modified by polycaprolactone fumarate polymer coating. Materials Science and Engineering C, 2020, 106, 110176.	7.3	33
14	The influence of polycaporolacton fumarate coating on mechanical properties and in vitro behavior of porous diopside-hardystonite nano-composite scaffold. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 101, 103445.	3.1	19
15	Baghdadite/Polycaprolactone nanocomposite scaffolds: preparation, characterisation, and in vitro biological responses of human osteoblast-like cells (Saos-2 cell line). Materials Technology, 2020, 35, 421-432.	3.0	12
16	Novel Porous Barium Titanate/Nano-bioactive Glass Composite with High Piezoelectric Coefficient for Bone Regeneration Applications. Journal of Materials Engineering and Performance, 2020, 29, 5420-5427.	2.5	15
17	Zirconium modified calciumâ€silicateâ€based nanoceramics: An in vivo evaluation in a rabbit tibial defect model. International Journal of Applied Ceramic Technology, 2019, 16, 431-437.	2.1	16
18	Poly (Vinyl Alcohol)/Chitosan/Akermanite Nanofibrous Scaffolds Prepared by Electrospinning. Journal of Macromolecular Science - Physics, 2019, 58, 749-759.	1.0	9

#	Article	IF	Citations
19	Fabrication, characterization and examination of $\langle i \rangle$ in vitro $\langle j \rangle$ of baghdadite nanoparticles for biomedical applications. Materials Research Express, 2019, 6, 095411.	1.6	10
20	Effect of Microstructure on Hydrogen Embrittlement and Mechanical Properties of NiTi Biomaterials. Physics of Metals and Metallography, 2019, 120, 740-749.	1.0	1
21	Electrospun Polycaprolactone/Graphene/Baghdadite Composite Nanofibres with Improved Mechanical and Biological Properties. Fibers and Polymers, 2019, 20, 982-990.	2.1	14
22	Poly(dimethylsiloxane)/Cu/Ag nanocomposites: Electrical, thermal, and mechanical properties. Polymer Composites, 2019, 40, 4093-4101.	4.6	6
23	Hardystoniteâ€Coated Poly(<scp> </scp> â€lactide) Nanofibrous Scaffold and Efficient Osteogenic Differentiation of Adiposeâ€Derived Mesenchymal Stem Cells. Artificial Organs, 2018, 42, E335-E348.	1.9	11
24	The combined effects of three-dimensional cell culture and natural tissue extract on neural differentiation of P19 embryonal carcinoma stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1909-1924.	2.7	7
25	Investigation of Osteoinductive Effects of Different Compositions of Bioactive Glass Nanoparticles for Bone Tissue Engineering. ASAIO Journal, 2017, 63, 512-517.	1.6	13
26	The fabrication and characterization of barium titanate/akermanite nano-bio-ceramic with a suitable piezoelectric coefficient for bone defect recovery. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 365-370.	3.1	37
27	Reinforcement of electrospun poly(ε aprolactone) scaffold using diopside nanopowder to promote biological and physical properties. Journal of Applied Polymer Science, 2017, 134, .	2.6	25
28	Enhanced osteoconductivity of polyethersulphone nanofibres loaded with bioactive glass nanoparticles in <i>inÂvitro</i> and <i>inÂvivo</i> models. Cell Proliferation, 2015, 48, 455-464.	5. 3	47
29	Rice husk derived bioactive glass-ceramic as a functional bioceramic: Synthesis, characterization and biological testing. Journal of Non-Crystalline Solids, 2015, 427, 54-61.	3.1	30
30	A Short Study on the Experimental Glass-Ionomer Cement Containing P2O5. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 74-80.	1.6	1
31	Effect of forsterite nanoparticles on mechanical properties of glass ionomer cements. Ceramics International, 2014, 40, 10743-10748.	4.8	19
32	Coating of electrospun poly(lacticâ€coâ€glycolic acid) nanofibers with willemite bioceramic: improvement of bone reconstruction in rat model. Cell Biology International, 2014, 38, 1271-1279.	3.0	36
33	Preparation, Physicochemical Characterization, and Bioactivity Evaluation of Strontium-Containing Glass Ionomer Cement., 2013, 2013, 1-7.		10
34	Preparation, chemistry and physical properties of bone-derived hydroxyapatite particles having a negative zeta potential. Materials Chemistry and Physics, 2012, 132, 446-452.	4.0	50
35	Investigation of adding fluoroapatite nanoparticles on compressive strength and corrosion behaviour of dental amalgams. Processing and Application of Ceramics, 2012, 6, 193-199.	0.8	O
36	New Approach to Bone Tissue Engineering: Simultaneous Application of Hydroxyapatite and Bioactive Glass Coated on a Poly(<scp>l</scp> -lactic acid) Scaffold. ACS Applied Materials & Diterfaces, 2011, 3, 4518-4524.	8.0	106

#	Article	IF	CITATIONS
37	Direct cytotoxicity evaluation of 63S bioactive glass and bone-derived hydroxyapatite particles using yeast model and human chondrocyte cells by microcalorimetry. Journal of Materials Science: Materials in Medicine, 2011, 22, 2293-2300.	3.6	16
38	A comparative physico-chemical study of bioactive glass and bone-derived hydroxyapatite. Ceramics International, 2011, 37, 1601-1607.	4.8	51
39	Bioactive glass nanoparticles with negative zeta potential. Ceramics International, 2011, 37, 2311-2316.	4.8	132
40	CYTOTOXICITY EVALUATION OF 63S BIOACTIVE GLASS AND BONE-DERIVED HYDROXYAPATITE PARTICLES USING HUMAN BONE-MARROW STEM CELLS. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2011, 155, 323-326.	0.6	12
41	Biocompatibility evaluation of bioglass nanoparticles to chondrocyte cells by isothermal microcalorimetry. , 2010, , .		1
42	Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant. Journal of Materials Processing Technology, 2009, 209, 1385-1391.	6.3	118
43	Determination of Crystallite Size in Synthetic and Natural Hydroxyapatite: A Comparison between XRD and TEM Results. Advanced Materials Research, 0, 620, 28-34.	0.3	16