Vivek Bhalla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4991117/publications.pdf Version: 2024-02-01

VIVER RHALLA

#	Article	IF	CITATIONS
1	Hypothesis: Accessory renal arteries may be an overlooked cause of renin-dependent hypertension. Journal of Human Hypertension, 2022, 36, 493-497.	1.0	3
2	Self-limited Hypertension Due to Kidney Infarction. Kidney Medicine, 2022, 4, 100454.	1.0	0
3	Changing the Trajectory of Heart Failure and Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2022, , CJN.00470122.	2.2	2
4	Masking by hypokalemia—primary aldosteronism with undetectable aldosterone. CKJ: Clinical Kidney Journal, 2021, 14, 1269-1271.	1.4	1
5	Aldosterone sensitivity: an opportunity to explore the pathogenesis of hypertension. American Journal of Physiology - Renal Physiology, 2021, 320, F325-F335.	1.3	7
6	Testing for Primary Aldosteronism and Mineralocorticoid Receptor Antagonist Use Among U.S. Veterans. Annals of Internal Medicine, 2021, 174, 289-297.	2.0	79
7	Canagliflozin, serum magnesium and cardiovascular outcomes—Analysis from the CANVAS Program. Endocrinology, Diabetes and Metabolism, 2021, 4, e00247.	1.0	5
8	A historical perspective on ACE2 in the COVID-19 era. Journal of Human Hypertension, 2021, 35, 935-939.	1.0	41
9	SGLT2 inhibitors: diabetic kidney disease and beyond. American Journal of Physiology - Renal Physiology, 2020, 319, F780-F781.	1.3	2
10	Cardiorenal Protection With the Newer Antidiabetic Agents in Patients With Diabetes and Chronic Kidney Disease: A Scientific Statement From the American Heart Association. Circulation, 2020, 142, e265-e286.	1.6	107
11	Uncontrolled Hypertension in an Elderly Man on Multiple Antihypertensive Drugs. Hypertension, 2020, 76, 1658-1663.	1.3	1
12	How We Manage Hypertension in a Patient with a Recent Stroke. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1352-1354.	2.2	0
13	Screening Rates for Primary Aldosteronism in Resistant Hypertension. Hypertension, 2020, 75, 650-659.	1.3	92
14	Sound Science before Quick Judgement Regarding RAS Blockade in COVID-19. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 714-716.	2.2	74
15	Urinary Albumin, Sodium, and Potassium and Cardiovascular Outcomes in the UK Biobank. Hypertension, 2020, 75, 714-722.	1.3	29
16	Intercalated Cells of the Kidney Collecting Duct in Kidney Physiology. Seminars in Nephrology, 2019, 39, 353-367.	0.6	27
17	Current Status of Angiotensin Receptor Blocker Recalls. Hypertension, 2019, 74, 1275-1278.	1.3	12
18	2019 AHA/ACC Clinical Performance and Quality Measures for Adults With High Blood Pressure: A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures. Circulation: Cardiovascular Quality and Outcomes, 2019, 12, e000057.	0.9	46

VIVEK BHALLA

#	Article	IF	CITATIONS
19	AMPK phosphorylation of the β ₁ Pix exchange factor regulates the assembly and function of an ENaC inhibitory complex in kidney epithelial cells. American Journal of Physiology - Renal Physiology, 2019, 317, F1513-F1525.	1.3	5
20	Prospective Biopsy-Based Study of CKD of Unknown Etiology in Sri Lanka. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 224-232.	2.2	27
21	Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement From the American Heart Association. Circulation, 2019, 139, e840-e878.	1.6	619
22	Hypertension Hot Potato — Anatomy of the Angiotensin-Receptor Blocker Recalls. New England Journal of Medicine, 2019, 380, 1589-1591.	13.9	37
23	2019 AHA/ACC Clinical Performance and Quality Measures for Adults With High Blood Pressure. Journal of the American College of Cardiology, 2019, 74, 2661-2706.	1.2	33
24	Comparison of routine and automated office blood pressure measurement. Blood Pressure Monitoring, 2019, 24, 174-178.	0.4	4
25	Epidemiology, molecular, and genetic methodologies to evaluate causes ofÂCKDuÂaroundÂthe world: report of the Working GroupÂfrom the ISN InternationalÂConsortium ofÂCollaborators onÂCKDu. Kidney International, 2019, 96, 1254-1260.	2.6	16
26	Celebrating 40 Years of Accomplishments. Hypertension, 2019, 73, 3-6.	1.3	0
27	Esmâ€1 Protects Mice from Glomerular Macrophage Infiltration and Macroalbuminuria in Diabetic Nephropathy. FASEB Journal, 2019, 33, 567.16.	0.2	0
28	Diverse nephron cell typeâ€specific adaptation to furosemide by morphometry and single cell RNA sequencing. FASEB Journal, 2019, 33, 862.29.	0.2	0
29	A Novel High-Resolution Magnetic Resonance Imaging Protocol Detects Aldosterone-Producing Adenomas in Patients With Negative Computed Tomography. American Journal of Hypertension, 2018, 31, 928-932.	1.0	0
30	Insights from direct renal insulin infusion: a new hammer for an age-old nail. American Journal of Physiology - Renal Physiology, 2018, 314, F926-F927.	1.3	0
31	Age-Related Blood Pressure Sensitivity to Aldosterone in Blacks and Whites. Hypertension, 2018, 72, 247-252.	1.3	22
32	Improved protocols for the study of urinary electrolyte excretion and blood pressure in rodents: use of gel food and stepwise changes in diet composition. American Journal of Physiology - Renal Physiology, 2018, 314, F1129-F1137.	1.3	8
33	Renal tubule insulin receptor modestly promotes elevated blood pressure and markedly stimulates glucose reabsorption. JCI Insight, 2018, 3, .	2.3	23
34	Explaining the Coincidence Rule for Estimating Respiratory Compensation in Metabolic Acid–Base Disorders. Annals of Internal Medicine, 2017, 166, 610.	2.0	2
35	Molecular Mechanisms of Sodium-Sensitive Hypertension in the Metabolic Syndrome. Current Hypertension Reports, 2017, 19, 60.	1.5	13
36	Murine glomerular transcriptome links endothelial cell-specific molecule-1 deficiency with susceptibility to diabetic nephropathy. PLoS ONE, 2017, 12, e0185250.	1.1	23

VIVEK BHALLA

#	Article	IF	CITATIONS
37	Abstract P145: Screening Rates for the Diagnostic Workup of Resistant Hypertension. Hypertension, 2017, 70, .	1.3	0
38	Pemetrexed-Induced Nephrogenic Diabetes Insipidus. American Journal of Kidney Diseases, 2016, 68, 628-632.	2.1	6
39	Regulation of the Water Channel Aquaporin-2 via 14-3-3Î, and -ζ. Journal of Biological Chemistry, 2016, 291, 2469-2484.	1.6	31
40	New perspective of ClC-Kb/2 Clâ^' channel physiology in the distal renal tubule. American Journal of Physiology - Renal Physiology, 2016, 310, F923-F930.	1.3	24
41	Na ⁺ -sensitive elevation in blood pressure is ENaC independent in diet-induced obesity and insulin resistance. American Journal of Physiology - Renal Physiology, 2016, 310, F812-F820.	1.3	19
42	The Missing Link: Studying the Alternative TGF-β Pathway Provides a Unifying Theory for Different Components of Diabetic Nephropathy. Diabetes, 2015, 64, 1898-1900.	0.3	5
43	Harvest and primary culture of the murine aldosterone-sensitive distal nephron. American Journal of Physiology - Renal Physiology, 2015, 308, F1306-F1315.	1.3	11
44	AMPK Regulates the Vacuolar H + â€ATPase via 14â€Â3Ââ€3 Proteins. FASEB Journal, 2015, 29, 969.23.	0.2	1
45	ls There a Sweet Spot for Nrf2 Activation in the Treatment of Diabetic Kidney Disease?. Diabetes, 2014, 63, 2904-2905.	0.3	13
46	Aldosterone Regulates MicroRNAs in the Cortical Collecting Duct to Alter Sodium Transport. Journal of the American Society of Nephrology: JASN, 2014, 25, 2445-2457.	3.0	42
47	A Transcriptional Blueprint for Human and Murine Diabetic Kidney Disease. Diabetes, 2013, 62, 31-33.	0.3	6
48	Racial/Ethnic Differences in the Prevalence of Proteinuric and Nonproteinuric Diabetic Kidney Disease. Diabetes Care, 2013, 36, 1215-1221.	4.3	62
49	Low-Level Lead Exposure and the Prevalence of Gout. Annals of Internal Medicine, 2012, 157, 233.	2.0	50
50	Aldosterone Regulation of Ion Transport. , 2012, , 202-225.		3
51	In diabetic nephropathy, high doses of vitamin B decrease glomerular filtration rate and increase risk of the composite outcome of a vascular event or all-cause mortality compared with placebo. Evidence-Based Medicine, 2011, 16, 14-15.	0.6	1
52	Neural Precursor Cell-expressed Developmentally Down-regulated Protein 4-2 (Nedd4-2) Regulation by 14-3-3 Protein Binding at Canonical Serum and Glucocorticoid Kinase 1 (SGK1) Phosphorylation Sites. Journal of Biological Chemistry, 2011, 286, 37830-37840.	1.6	42
53	Phosphopeptide Screen Uncovers Novel Phosphorylation Sites of Nedd4-2 That Potentiate Its Inhibition of the Epithelial Na+ Channel. Journal of Biological Chemistry, 2010, 285, 21671-21678.	1.6	39
54	Phosphopeptide Screen Uncovers JNK1 as a Potentiator of Nedd4â€2â€Mediated Epithelial Na+ Channel Inhibition. FASEB Journal, 2010, 24, 611.18.	0.2	0

VIVEK BHALLA

#	Article	IF	CITATIONS
55	Melamine nephrotoxicity: an emerging epidemic in an era of globalization. Kidney International, 2009, 75, 774-779.	2.6	135
56	Lead poisoning from an Ayurvedic herbal medicine in a patient with chronic kidney disease. Nature Reviews Nephrology, 2009, 5, 297-300.	4.1	18
57	Mechanisms of ENaC Regulation and Clinical Implications. Journal of the American Society of Nephrology: JASN, 2008, 19, 1845-1854.	3.0	232
58	NH2 terminus of serum and glucocorticoid-regulated kinase 1 binds to phosphoinositides and is essential for isoform-specific physiological functions. American Journal of Physiology - Renal Physiology, 2007, 292, F1741-F1750.	1.3	40
59	AMP-activated Kinase Inhibits the Epithelial Na+ Channel through Functional Regulation of the Ubiquitin Ligase Nedd4-2. Journal of Biological Chemistry, 2006, 281, 26159-26169.	1.6	139
60	Disinhibitory pathways for control of sodium transport: regulation of ENaC by SGK1 and GILZ. American Journal of Physiology - Renal Physiology, 2006, 291, F714-F721.	1.3	89
61	SGK1: A Rapid Aldosterone-Induced Regulator of Renal Sodium Reabsorption. Physiology, 2005, 20, 134-139.	1.6	74
62	Serum- and Glucocorticoid-Regulated Kinase 1 Regulates Ubiquitin Ligase Neural Precursor Cell-Expressed, Developmentally Down-Regulated Protein 4-2 by Inducing Interaction with 14-3-3. Molecular Endocrinology, 2005, 19, 3073-3084.	3.7	167

5