Nobuko Hanada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4991069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast and stable hydrogen storage in the porous composite of MgH2 with Nb2O5 catalyst and carbon nanotube. Journal of Alloys and Compounds, 2022, 893, 162206.	5.5	32
2	Evaluation of Electric Insulation Properties of Lacquer Films for the Use to Electronic Circuits. Transactions of the Society of Instrument and Control Engineers, 2022, 58, 61-71.	0.2	0
3	Systematic investigation of anode catalysts for liquid ammonia electrolysis. Journal of Catalysis, 2022, 406, 222-230.	6.2	5
4	Structural Properties of (Ti, Zr)(Mn,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 632 Td (Cr) ₂ Element. Materials Transactions, 2021, 62, 899-904.	<i>M 1.2</i>	<s 2</s
5	Low-temperature chemical synthesis of intermetallic TiFe nanoparticles for hydrogen absorption. International Journal of Hydrogen Energy, 2021, 46, 22611-22617.	7.1	17
6	Environmentally friendly chemical synthesis of intermetallic iron aluminide submicrometer particles. Journal of Cleaner Production, 2021, 316, 128264.	9.3	7
7	Numerical simulation of heat supply and hydrogen desorption by hydrogen flow to porous MgH2 sheet. Chemical Engineering Journal, 2021, 421, 129648.	12.7	4
8	Chemical synthesis of unique intermetallic TiFe nanostructures originating from the morphology of oxide precursors. Nanoscale Advances, 2021, 3, 5284-5291.	4.6	9
9	Electrolysis of ammonia in aqueous solution by platinum nanoparticles supported on carbon nanotube film electrode. Electrochimica Acta, 2020, 341, 136027.	5.2	25
10	Effect of CO2 on hydrogen absorption in Ti-Zr-Mn-Cr based AB2 type alloys. Journal of Alloys and Compounds, 2017, 705, 507-516.	5.5	19
11	Material Transformation of Alumina and Influence on Leakage Current by Application of DC High Voltage at High Temperatures. IEEJ Transactions on Fundamentals and Materials, 2017, 137, 685-692.	0.2	1
12	<i>In-Situ</i> XAS for Niobium Oxide Catalyst on Hydrogen Absorption and Desorption of Magnesium. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 79, 107-111.	0.4	3
13	dc Voltage Insulating Properties of Various Inorganic Materials in Hydrogen Atmosphere at High Temperatures. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2015, 193, 1-8.	0.4	1
14	Dependence of constituent elements of AB5 type metal hydrides on hydrogenation degradation by CO2 poisoning. Journal of Alloys and Compounds, 2015, 647, 198-203.	5.5	21
15	A novel tunnel Na0.61Ti0.48Mn0.52O2 cathode material for sodium-ion batteries. Chemical Communications, 2014, 50, 7998.	4.1	61
16	Study on the capacity fading of pristine and FePO 4 coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 by Electrochemical and Magnetical techniques. Electrochimica Acta, 2014, 148, 26-32.	5.2	11
17	Concept Proposal and Test Run Results for a Hybrid Electric Energy Storage Method of High Power Capacitor/Large Energy Battery Combination. IEEJ Transactions on Power and Energy, 2014, 134, 76-83.	0.2	4
18	DC Voltage Insulating Properties of Various Inorganic Materials in Hydrogen Atmosphere at High Temperatures. IEEJ Transactions on Fundamentals and Materials, 2014, 134, 466-471.	0.2	0

Νοβυκό Ηάναδα

#	Article	IF	CITATIONS
19	A hydrogen purification and storage system using CO adsorbent and metal hydride. Journal of Alloys and Compounds, 2013, 580, S414-S417.	5.5	34
20	Electrochemical charge and discharge properties for the formation of magnesium and aluminum hydrides. Journal of Alloys and Compounds, 2011, 509, S584-S587.	5.5	21
21	Effects of deformation on hydrogen absorption and desorption properties of titanium. Journal of Alloys and Compounds, 2011, 509, S759-S762.	5.5	4
22	Existing State of Hydrogen in Electrochemically Charged Commercial-Purity Aluminum and Its Effects on Tensile Properties. Materials Transactions, 2011, 52, 1741-1747.	1.2	9
23	Effect of several metal chlorides on the thermal decomposition behaviour of α-Mg(BH4)2. International Journal of Hydrogen Energy, 2011, 36, 12313-12318.	7.1	61
24	The Existing State of Hydrogen in Electrochemically Charged Commercial Purity Aluminum and Its Effect on the Tensile Properties. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2010, 74, 65-71.	0.4	3
25	Hydrogen generation by electrolysis of liquid ammonia. Chemical Communications, 2010, 46, 7775.	4.1	55
26	Electrochemical Charge for the Formation of Metal Hydrides from LiH+M (M=Mg, Al). Materials Research Society Symposia Proceedings, 2009, 1216, 1.	0.1	0
27	X-ray Absorption Spectroscopic Study on Valence State and Local Atomic Structure of Transition Metal Oxides Doped in MgH ₂ . Journal of Physical Chemistry C, 2009, 113, 13450-13455.	3.1	64
28	Evaluation of enthalpy change due to hydrogen desorption for lithium amide/imide system by differential scanning calorimetry. Thermochimica Acta, 2008, 468, 35-38.	2.7	24
29	SEM and TEM characterization of magnesium hydride catalyzed with Ni nano-particle or Nb2O5. Journal of Alloys and Compounds, 2008, 450, 395-399.	5.5	73
30	Thermal decomposition of Mg(BH4)2 under He flow and H2 pressure. Journal of Materials Chemistry, 2008, 18, 2611.	6.7	103
31	Comparison of the Calculated and Experimental Scenarios for Solid-State Reactions Involving Ca(AlH ₄) ₂ . Journal of Physical Chemistry C, 2008, 112, 131-138.	3.1	16
32	Hydrogen absorption kinetics of the catalyzed MgH2 by niobium oxide. Journal of Alloys and Compounds, 2007, 446-447, 67-71.	5.5	58
33	Thermal analysis on the Li–Mg–B–H systems. Journal of Alloys and Compounds, 2007, 446-447, 306-309.	5.5	74
34	Remarkable improvement of hydrogen sorption kinetics in magnesium catalyzed with Nb2O5. Journal of Alloys and Compounds, 2006, 420, 46-49.	5.5	231
35	Catalytic effect of niobium oxide on hydrogen storage properties of mechanically ball milled MgH2. Physica B: Condensed Matter, 2006, 383, 49-50.	2.7	27
36	Composite Materials based on Light Elements for Hydrogen Storage. Materials Transactions, 2005, 46, 1-14.	1.2	79

Νοβυκό Ηάναδα

#	Article	IF	CITATIONS
37	Catalytic Effect of Nanoparticle 3d-Transition Metals on Hydrogen Storage Properties in Magnesium Hydride MgH2Prepared by Mechanical Milling. Journal of Physical Chemistry B, 2005, 109, 7188-7194.	2.6	518
38	New Metalâ^'Nâ^'H System Composed of Mg(NH2)2and LiH for Hydrogen Storage. Journal of Physical Chemistry B, 2004, 108, 8763-8765.	2.6	309
39	New Metal—N—H System Composed of Mg(NH2)2 and LiH for Hydrogen Storage ChemInform, 2004, 35, no.	0.0	0
40	Mechanism of Novel Reaction from LiNH2 and LiH to Li2NH and H2 as a Promising Hydrogen Storage System ChemInform, 2004, 35, no.	0.0	1
41	Mechanism of Novel Reaction from LiNH2and LiH to Li2NH and H2as a Promising Hydrogen Storage System. Journal of Physical Chemistry B, 2004, 108, 7887-7892.	2.6	296
42	Lithium nitride for reversible hydrogen storage. Journal of Alloys and Compounds, 2004, 365, 271-276.	5.5	305
43	Correlation between hydrogen storage properties and structural characteristics in mechanically milled magnesium hydride MgH2. Journal of Alloys and Compounds, 2004, 366, 269-273.	5.5	112
44	Hydriding properties of ordered-/disordered-Mg-based ternary Laves phase structures. Journal of Alloys and Compounds, 2003, 356-357, 429-432.	5.5	22
45	Hydriding Properties of Mg-based Ternary Laves Phase Alloys with Ordered and Disordered Structures. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2002, 66, 466-469.	0.4	0