
Bo Torben Porse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/499106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiomic Profiling of Central Nervous System Leukemia Identifies mRNA Translation as a Therapeutic Target. Blood Cancer Discovery, 2022, 3, 16-31.	2.6	4
2	Dynamic intron retention modulates gene expression in the monocytic differentiation pathway. Immunology, 2022, 165, 274-286.	2.0	7
3	Real-Time Search-Assisted Acquisition on a Tribrid Mass Spectrometer Improves Coverage in Multiplexed Single-Cell Proteomics. Molecular and Cellular Proteomics, 2022, 21, 100219.	2.5	44
4	H3K9 dimethylation safeguards cancer cells against activation of the interferon pathway. Science Advances, 2022, 8, eabf8627.	4.7	10
5	PTBP1 promotes hematopoietic stem cell maintenance and red blood cell development by ensuring sufficient availability of ribosomal constituents. Cell Reports, 2022, 39, 110793.	2.9	3
6	Transcription factor-driven coordination of cell cycle exit and lineage-specification in vivo during granulocytic differentiation. Nature Communications, 2022, 13, .	5.8	16
7	Targeted inhibition of cooperative mutation- and therapy-induced AKT activation in AML effectively enhances response to chemotherapy. Leukemia, 2021, 35, 2030-2042.	3.3	14
8	The ASXL1-G643W variant accelerates the development of CEBPA mutant acute myeloid leukemia. Haematologica, 2021, 106, 1000-1007.	1.7	9
9	Basement membrane stiffness determines metastases formation. Nature Materials, 2021, 20, 892-903.	13.3	94
10	Quantitative single-cell proteomics as a tool to characterize cellular hierarchies. Nature Communications, 2021, 12, 3341.	5.8	197
11	The EHA Research Roadmap: Normal Hematopoiesis. HemaSphere, 2021, 5, e669.	1.2	1
12	Myelodysplastic syndrome patient-derived xenografts: from no options to many. Haematologica, 2020, 105, 864-869.	1.7	17
13	CCAAT enhancer binding protein alpha (CEBPA) biallelic acute myeloid leukaemia: cooperating lesions, molecular mechanisms and clinical relevance. British Journal of Haematology, 2020, 190, 495-507.	1.2	31
14	Heterozygous loss of Srp72 in mice is not associated with major hematological phenotypes. European Journal of Haematology, 2019, 103, 319-328.	1.1	5
15	Mutant CEBPA directly drives the expression of the targetable tumor-promoting factor CD73 in AML. Science Advances, 2019, 5, eaaw4304.	4.7	28
16	The splicing factor RBM25 controls MYC activity in acute myeloid leukemia. Nature Communications, 2019, 10, 172.	5.8	42
17	Inhibition of Upf2-Dependent Nonsense-Mediated Decay Leads to Behavioral and Neurophysiological Abnormalities by Activating the Immune Response. Neuron, 2019, 104, 665-679.e8.	3.8	43
18	ERG Controls B Cell Development by Promoting Igh V-to-DJ Recombination. Cell Reports, 2019, 29, 2756-2769.e6.	2.9	7

#	Article	IF	CITATIONS
19	A programmed wave of uridylation-primed mRNA degradation is essential for meiotic progression and mammalian spermatogenesis. Cell Research, 2019, 29, 221-232.	5.7	48
20	SinaPlot: An Enhanced Chart for Simple and Truthful Representation of Single Observations Over Multiple Classes. Journal of Computational and Graphical Statistics, 2018, 27, 673-676.	0.9	37
21	Human adult HSCs can be discriminated from lineage-committed HPCs by the expression of endomucin. Blood Advances, 2018, 2, 1628-1632.	2.5	10
22	Testosterone is an endogenous regulator of BAFF and splenic B cell number. Nature Communications, 2018, 9, 2067.	5.8	66
23	Enhancer and Transcription Factor Dynamics during Myeloid Differentiation Reveal an Early Differentiation Block in Cebpa null Progenitors. Cell Reports, 2018, 23, 2744-2757.	2.9	45
24	A new genetic tool to improve immuneâ€compromised mouse models: Derivation and CRISPR/Cas9â€mediated targeting of NRG embryonic stem cell lines. Genesis, 2018, 56, e23238.	0.8	1
25	Differences in Cell Cycle Status Underlie Transcriptional Heterogeneity in the HSC Compartment. Cell Reports, 2018, 24, 766-780.	2.9	40
26	Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates. Journal of Clinical Investigation, 2018, 128, 4260-4279.	3.9	97
27	EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nature Medicine, 2017, 23, 483-492.	15.2	392
28	Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality. Nucleic Acids Research, 2016, 44, 4037-4051.	6.5	26
29	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 2016, 167, 1145-1149.	13.5	404
30	C/EBPα creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 andÂBrd4. Nature Cell Biology, 2016, 18, 371-381.	4.6	94
31	BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis. Nucleic Acids Research, 2016, 44, D917-D924.	6.5	242
32	UPF2-Dependent Nonsense-Mediated mRNA Decay Pathway Is Essential for Spermatogenesis by Selectively Eliminating Longer 3'UTR Transcripts. PLoS Genetics, 2016, 12, e1005863.	1.5	94
33	Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood, 2015, 126, 1214-1223.	0.6	157
34	UPF2, a nonsense-mediated mRNA decay factor, is required for prepubertal Sertoli cell development and male fertility by ensuring fidelity of the transcriptome. Development (Cambridge), 2015, 142, 352-62.	1.2	30
35	Amplification of pico-scale DNA mediated by bacterial carrier DNA for small-cell-number transcription factor ChIP-seq. BMC Genomics, 2015, 16, 46.	1.2	27
36	Loss of <i>TET2</i> in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes and Development, 2015, 29, 910-922.	2.7	213

#	Article	IF	CITATIONS
37	ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation. Genes and Development, 2015, 29, 1915-1929.	2.7	71
38	Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell, 2015, 163, 1663-1677.	13.5	875
39	Liver is the major source of elevated serum lipocalinâ€2 levels after bacterial infection or partial hepatectomy: A critical role for ILâ€6/STAT3. Hepatology, 2015, 61, 692-702.	3.6	143
40	C/EBPα Is Dispensable for the Ontogeny of PD-1+ CD4+ Memory T Cells but Restricts Their Expansion in an Age-Dependent Manner. PLoS ONE, 2014, 9, e84728.	1.1	15
41	C/EBPα Is Required for Long-Term Self-Renewal and Lineage Priming of Hematopoietic Stem Cells and for the Maintenance of Epigenetic Configurations in Multipotent Progenitors. PLoS Genetics, 2014, 10, e1004079.	1.5	85
42	Initiation of MLL-rearranged AML is dependent on C/EBPα. Journal of Experimental Medicine, 2014, 211, 5-13.	4.2	62
43	Integrative analysis of histone ChIP-seq and transcription data using Bayesian mixture models. Bioinformatics, 2014, 30, 1154-1162.	1.8	31
44	Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients. Blood, 2014, 123, 894-904.	0.6	133
45	The functional consequences of intron retention: Alternative splicing coupled to <scp>NMD</scp> as a regulator of gene expression. BioEssays, 2014, 36, 236-243.	1.2	190
46	spliceR: an R package for classification of alternative splicing and prediction of coding potential from RNA-seq data. BMC Bioinformatics, 2014, 15, 81.	1.2	100
47	Regulation of Trib2 by an E2F1-C/EBPα feedback loop in AML cell proliferation. Blood, 2014, 123, 2389-2400.	0.6	44
48	shRNA screening identifies JMJD1C as being required for leukemia maintenance. Blood, 2014, 123, 1870-1882.	0.6	73
49	Lack of the p42 form of C/EBPα leads to spontaneous immortalization and lineage infidelity of committed myeloid progenitors. Experimental Hematology, 2013, 41, 882-893.e16.	0.2	8
50	PRDM11 is dispensable for the maintenance and function of hematopoietic stem and progenitor cells. Stem Cell Research, 2013, 11, 1129-1136.	0.3	5
51	Temporal mapping of CEBPA and CEBPB binding during liver regeneration reveals dynamic occupancy and specific regulatory codes for homeostatic and cell cycle gene batteries. Genome Research, 2013, 23, 592-603.	2.4	73
52	Regulation of Axon Guidance by Compartmentalized Nonsense-Mediated mRNA Decay. Cell, 2013, 153, 1252-1265.	13.5	174
53	HemaExplorer: a database of mRNA expression profiles in normal and malignant haematopoiesis. Nucleic Acids Research, 2013, 41, D1034-D1039.	6.5	65
54	HemaExplorer: a Web server for easy and fast visualization of gene expression in normal and malignant hematopoiesis. Blood, 2012, 119, 6394-6395.	0.6	32

#	Article	IF	CITATIONS
55	Mammalian tissues defective in nonsense-mediated mRNA decay display highly aberrant splicing patterns. Genome Biology, 2012, 13, R35.	13.9	113
56	PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2. Nature Neuroscience, 2012, 15, 381-388.	7.1	212
57	Allelic methylation levels of the noncoding VTRNA2-1 located on chromosome 5q31.1 predict outcome in AML. Blood, 2012, 119, 206-216.	0.6	97
58	BLUEPRINT to decode the epigenetic signature written in blood. Nature Biotechnology, 2012, 30, 224-226.	9.4	323
59	Phosphorylation of Serine 248 of C/EBPα Is Dispensable for Myelopoiesis but Its Disruption Leads to a Low Penetrant Myeloid Disorder with Long Latency. PLoS ONE, 2012, 7, e38841.	1.1	3
60	Technical Advance: Immunophenotypical characterization of human neutrophil differentiation. Journal of Leukocyte Biology, 2011, 90, 629-634.	1.5	37
61	Leukemia – methods and protocols. European Journal of Haematology, 2010, 84, 94-94.	1.1	0
62	UPF2 Is a Critical Regulator of Liver Development, Function and Regeneration. PLoS ONE, 2010, 5, e11650.	1.1	80
63	Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Research, 2010, 38, 4958-4969.	6.5	317
64	C/EBPα in leukemogenesis: Identity and origin of the leukemiaâ€initiating cell. BioFactors, 2009, 35, 227-231.	2.6	9
65	Modeling of C/EBPα Mutant Acute Myeloid Leukemia Reveals a Common Expression Signature of Committed Myeloid Leukemia-Initiating Cells. Cancer Cell, 2008, 13, 299-310.	7.7	225
66	Effect of Apolipoprotein M on High Density Lipoprotein Metabolism and Atherosclerosis in Low Density Lipoprotein Receptor Knock-out Mice. Journal of Biological Chemistry, 2008, 283, 1839-1847.	1.6	165
67	NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes and Development, 2008, 22, 1381-1396.	2.7	231
68	Mutation of C/EBPα predisposes to the development of myeloid leukemia in a retroviral insertional mutagenesis screen. Blood, 2008, 111, 4309-4321.	0.6	11
69	The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes and Development, 2007, 21, 525-530.	2.7	775
70	Distinct C/EBPα motifs regulate lipogenic and gluconeogenic gene expression in vivo. EMBO Journal, 2007, 26, 1081-1093.	3.5	85
71	Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nature Immunology, 2006, 7, 1048-1056.	7.0	407
72	Systems biology of neutrophil differentiation and immune response. Current Opinion in Immunology, 2006, 18, 54-60.	2.4	73

#	Article	IF	CITATIONS
73	C/EBPα: A tumour suppressor in multiple tissues?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2006, 1766, 88-103.	3.3	64
74	The Proline-Histidine-Rich CDK2/CDK4 Interaction Region of C/EBPα Is Dispensable for C/EBPα-Mediated Growth Regulation In Vivo. Molecular and Cellular Biology, 2006, 26, 1028-1037.	1.1	21
75	Messenger RNA Surveillance: Neutralizing Natural Nonsense. Current Biology, 2005, 15, R559-R562.	1.8	79
76	Highly glycosylated α1-acid glycoprotein is synthesized in myelocytes, stored in secondary granules, and released by activated neutrophils. Journal of Leukocyte Biology, 2005, 78, 462-470.	1.5	45
77	Loss of C/EBPα cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage. Journal of Experimental Medicine, 2005, 202, 85-96.	4.2	101
78	A novel partial modification at C2501 in Escherichia coli 23S ribosomal RNA. Rna, 2004, 10, 907-913.	1.6	83
79	A conserved chloramphenicol binding site at the entrance to the ribosomal peptide exit tunnel. Nucleic Acids Research, 2003, 31, 7208-7215.	6.5	38
80	E2F Repression by C/EBPα Is Required for Adipogenesis and Granulopoiesis In Vivo. Cell, 2001, 107, 247-258.	13.5	292
81	Puromycin–rRNA interaction sites at the peptidyl transferase center. Rna, 2000, 6, 744-754.	1.6	26
82	Peptidyl transferase antibiotics perturb the relative positioning of the 3′-terminal adenosine of P/P′-site-bound tRNA and 23S rRNA in the ribosome. Rna, 1999, 5, 1003-1013.	1.6	31
83	UV-induced modifications in the peptidyl transferase loop of 23S rRNA dependent on binding of the streptogramin B antibiotic, pristinamycin IA. Rna, 1999, 5, 585-595.	1.6	18
84	Ribosomal Mechanics, Antibiotics, and GTP Hydrolysis. Cell, 1999, 97, 423-426.	13.5	45
85	Sites of interaction of streptogramin A and B antibiotics in the peptidyl transferase loop of 23 S rRNA and the synergism of their inhibitory mechanisms 1 1Edited by D. E. Draper. Journal of Molecular Biology, 1999, 286, 375-387.	2.0	74
86	The antibiotic micrococcin acts on protein L11 at the ribosomal GTPase centre 1 1Edited by D. E. Draper. Journal of Molecular Biology, 1999, 287, 33-45.	2.0	56
87	The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre 1 1Edited by D. E. Draper. Journal of Molecular Biology, 1998, 276, 391-404.	2.0	114
88	Assembly of proteins and 5 S rRNA to transcripts of the major structural domains of 23 S rRNA 1 1Edited by D. E. Draper. Journal of Molecular Biology, 1998, 284, 227-240.	2.0	36
89	Movement of the $3\hat{a}\in^2$ -end of tRNA through the peptidyl transferase centre and its inhibition by antibiotics. FEBS Letters, 1997, 406, 223-233.	1.3	54
90	A Sparsomycin-resistant Mutant ofHalobacterium salinariumLacks a Modification at Nucleotide U2603 in the Peptidyl Transferase Centre of 23 S rRNA. Journal of Molecular Biology, 1996, 261, 231-238.	2.0	42

#	Article	IF	CITATIONS
91	The Donor Substrate Site within the Peptidyl Transferase Loop of 23 S rRNA and its Putative Interactions with the CCA-end of N-blocked Aminoacyl-tRNAPhe. Journal of Molecular Biology, 1996, 264, 472-483.	2.0	37
92	Mapping Important Nucleotides in the Peptidyl Transferase Centre of 23 S rRNA using a Random Mutagenesis Approach. Journal of Molecular Biology, 1995, 249, 1-10.	2.0	76
93	Antibiotic inhibition of the movement of tRNA substrates through a peptidyl transferase cavity. Biochemistry and Cell Biology, 1995, 73, 877-885.	0.9	21