Nathalie Vionnet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4991042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term body composition improvement in post-menopausal women following bariatric surgery: a cross-sectional and case–control study. European Journal of Endocrinology, 2022, 186, 255-263.	3.7	2
2	Discriminating Dietary Responses by Combining Transcriptomics and Metabolomics Data in Nutrition Intervention Studies. Molecular Nutrition and Food Research, 2021, 65, e2000647.	3.3	7
3	Nutrivolatilomics of Urinary and Plasma Samples to Identify Candidate Biomarkers after Cheese, Milk, and Soy-Based Drink Intake in Healthy Humans. Journal of Proteome Research, 2020, 19, 4019-4033.	3.7	9
4	Identification of Milk and Cheese Intake Biomarkers in Healthy Adults Reveals High Interindividual Variability of Lewis System–Related Oligosaccharides. Journal of Nutrition, 2020, 150, 1058-1067.	2.9	14
5	Trimethylamine-N-Oxide Postprandial Response in Plasma and Urine Is Lower After Fermented Compared to Non-Fermented Dairy Consumption in Healthy Adults. Nutrients, 2020, 12, 234.	4.1	27
6	Assessment of lactase activity in humans by measurement of galactitol and galactonate in serum and urine after milk intake. American Journal of Clinical Nutrition, 2019, 109, 470-477.	4.7	12
7	The role of foodomics to understand the digestion/bioactivity relationship of food. Current Opinion in Food Science, 2018, 22, 67-73.	8.0	14
8	Metabolic Footprinting of Fermented Milk Consumption in Serum of Healthy Men. Journal of Nutrition, 2018, 148, 851-860.	2.9	43
9	GC-MS Based Metabolomics and NMR Spectroscopy Investigation of Food Intake Biomarkers for Milk and Cheese in Serum of Healthy Humans. Metabolites, 2018, 8, 26.	2.9	38
10	Modulation of the peripheral blood transcriptome by the ingestion of probiotic yoghurt and acidified milk in healthy, young men. PLoS ONE, 2018, 13, e0192947.	2.5	40
11	Probiotic yogurt and acidified milk similarly reduce postprandial inflammation and both alter the gut microbiota of healthy, young men. British Journal of Nutrition, 2017, 117, 1312-1322.	2.3	81
12	Identification of Urinary Food Intake Biomarkers for Milk, Cheese, and Soy-Based Drink by Untargeted GC-MS and NMR in Healthy Humans. Journal of Proteome Research, 2017, 16, 3321-3335.	3.7	60
13	Blood lactose after dairy product intake in healthy men. British Journal of Nutrition, 2017, 118, 1070-1077.	2.3	18
14	The postprandial metabolome — a source of Nutritional Biomarkers of Health. Current Opinion in Food Science, 2017, 16, 67-73.	8.0	10
15	Decreasing Insulin Sensitivity in Women Induces Alterations in LH Pulsatility. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3240-3249.	3.6	11
16	Inflammatory and metabolic responses to high-fat meals with and without dairy products in men. British Journal of Nutrition, 2015, 113, 1853-1861.	2.3	38
17	A Dose-Response Strategy Reveals Differences between Normal-Weight and Obese Men in Their Metabolic and Inflammatory Responses to a High-Fat Meal. Journal of Nutrition, 2014, 144, 1517-1523.	2.9	38