
Peter Bell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4990858/publications.pdf Version: 2024-02-01

DETED REI

#	Article	IF	CITATIONS
1	Prednisolone reduces the interferon response to AAV in cynomolgus macaques and may increase liver gene expression. Molecular Therapy - Methods and Clinical Development, 2022, 24, 292-305.	4.1	10
2	Long-term stable reduction of low-density lipoprotein in nonhuman primates following inÂvivo genome editing of PCSK9. Molecular Therapy, 2021, 29, 2019-2029.	8.2	42
3	Developing a second-generation clinical candidate AAV vector for gene therapy of familial hypercholesterolemia. Molecular Therapy - Methods and Clinical Development, 2021, 22, 1-10.	4.1	14
4	Translational Feasibility of Lumbar Puncture for Intrathecal AAV Administration. Molecular Therapy - Methods and Clinical Development, 2020, 17, 969-974.	4.1	26
5	MicroRNA-mediated inhibition of transgene expression reduces dorsal root ganglion toxicity by AAV vectors in primates. Science Translational Medicine, 2020, 12, .	12.4	96
6	Adenoâ€associated virus serotype 1â€based gene therapy for FTD caused by <i>GRN</i> mutations. Annals of Clinical and Translational Neurology, 2020, 7, 1843-1853.	3.7	26
7	A mutation-independent CRISPR-Cas9–mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency. Science Advances, 2020, 6, eaax5701.	10.3	44
8	A Gene Therapy Approach to Improve Copper Metabolism and Prevent Liver Damage in a Mouse Model of Wilson Disease. Human Gene Therapy Clinical Development, 2019, 30, 29-39.	3.1	14
9	Safe and Sustained Expression of Human Iduronidase After Intrathecal Administration of Adeno-Associated Virus Serotype 9 in Infant Rhesus Monkeys. Human Gene Therapy, 2019, 30, 957-966.	2.7	60
10	The GPI-Linked Protein LY6A Drives AAV-PHP.B Transport across the Blood-Brain Barrier. Molecular Therapy, 2019, 27, 912-921.	8.2	158
11	AAV8 Gene Therapy Rescues the Newborn Phenotype of a Mouse Model of Crigler–Najjar. Human Gene Therapy, 2018, 29, 763-770.	2.7	19
12	The Neurotropic Properties of AAV-PHP.B Are Limited to C57BL/6J Mice. Molecular Therapy, 2018, 26, 664-668.	8.2	300
13	Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Human Gene Therapy, 2018, 29, 285-298.	2.7	543
14	Evaluation of Intrathecal Routes of Administration for Adeno-Associated Viral Vectors in Large Animals. Human Gene Therapy, 2018, 29, 15-24.	2.7	92
15	AAV8 Gene Therapy for Crigler-Najjar Syndrome in Macaques Elicited Transgene T Cell Responses That Are Resident to the Liver. Molecular Therapy - Methods and Clinical Development, 2018, 11, 191-201.	4.1	14
16	Intrathecal Viral Vector Delivery of Trastuzumab Prevents or Inhibits Tumor Growth of Human HER2-Positive Xenografts in Mice. Cancer Research, 2018, 78, 6171-6182.	0.9	15
17	Preparation of Nonhuman Primate Eyes for Histological Evaluation After Retinal Gene Transfer. Human Gene Therapy Methods, 2018, 29, 115-123.	2.1	0
18	Toxicology Study of Intra-Cisterna Magna Adeno-Associated Virus 9 Expressing Human Alpha-L-Iduronidase in Rhesus Macaques. Molecular Therapy - Methods and Clinical Development, 2018, 10, 79-88.	4.1	79

Peter Bell

#	Article	IF	CITATIONS
19	Meganuclease targeting of PCSK9 in macaque liver leads to stable reduction in serum cholesterol. Nature Biotechnology, 2018, 36, 717-725.	17.5	95
20	Toxicology Study of Intra-Cisterna Magna Adeno-Associated Virus 9 Expressing Iduronate-2-Sulfatase in Rhesus Macaques. Molecular Therapy - Methods and Clinical Development, 2018, 10, 68-78.	4.1	60
21	Determining the Minimally Effective Dose of a Clinical Candidate AAV Vector in a Mouse Model of Crigler-Najjar Syndrome. Molecular Therapy - Methods and Clinical Development, 2018, 10, 237-244.	4.1	10
22	AAV gene therapy corrects OTC deficiency and prevents liver fibrosis in aged OTC-knock out heterozygous mice. Molecular Genetics and Metabolism, 2017, 120, 299-305.	1.1	39
23	Non-Clinical Study Examining AAV8.TBC.hLDLR Vector-Associated Toxicity in Chow-Fed Wild-Type and LDLR ^{+/â^'} Rhesus Macaques. Human Gene Therapy Clinical Development, 2017, 28, 39-50.	3.1	46
24	Nonclinical Pharmacology/Toxicology Study of AAV8.TBG.mLDLR and AAV8.TBG.hLDLR in a Mouse Model of Homozygous Familial Hypercholesterolemia. Human Gene Therapy Clinical Development, 2017, 28, 28-38.	3.1	33
25	Abnormal polyamine metabolism is unique to the neuropathic forms of MPS: potential for biomarker development and insight into pathogenesis. Human Molecular Genetics, 2017, 26, 3837-3849.	2.9	5
26	Effects of Self-Complementarity, Codon Optimization, Transgene, and Dose on Liver Transduction with AAV8. Human Gene Therapy Methods, 2016, 27, 228-237.	2.1	15
27	Impact of intravenous infusion time on AAV8 vector pharmacokinetics, safety, and liver transduction in cynomolgus macaques. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16079.	4.1	14
28	Delivery of an Adeno-Associated Virus Vector into Cerebrospinal Fluid Attenuates Central Nervous System Disease in Mucopolysaccharidosis Type II Mice. Human Gene Therapy, 2016, 27, 906-915.	2.7	36
29	Neonatal tolerance induction enables accurate evaluation of gene therapy for MPS I in a canine model. Molecular Genetics and Metabolism, 2016, 119, 124-130.	1.1	34
30	Evaluation of AAV-mediated Gene Therapy for Central Nervous System Disease in Canine Mucopolysaccharidosis VII. Molecular Therapy, 2016, 24, 206-216.	8.2	70
31	A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nature Biotechnology, 2016, 34, 334-338.	17.5	476
32	Crispr/Cas9-Mediated In Vivo Gene Targeting Corrects Haemostasis in Newborn and Adult FIX-KO Mice. Blood, 2016, 128, 1174-1174.	1.4	9
33	Strategies for Selection of AAV Vectors for Administration to Liver: Studies in Nonhuman Primates. Blood, 2016, 128, 2316-2316.	1.4	1
34	Development and rescue of human familial hypercholesterolaemia in a xenograft mouse model. Nature Communications, 2015, 6, 7339.	12.8	51
35	Neonatal Systemic AAV Induces Tolerance to CNS Gene Therapy in MPS I Dogs and Nonhuman Primates. Molecular Therapy, 2015, 23, 1298-1307.	8.2	72
36	Motor Neuron Transduction After Intracisternal Delivery of AAV9 in a Cynomolgus Macaque. Human Gene Therapy Methods, 2015, 26, 43-44.	2.1	6

Peter Bell

#	Article	IF	CITATIONS
37	Comparative Study of Liver Gene Transfer With AAV Vectors Based on Natural and Engineered AAV Capsids. Molecular Therapy, 2015, 23, 1877-1887.	8.2	94
38	Widespread gene transfer in the central nervous system of cynomolgus macaques following delivery of AAV9 into the cisterna magna. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14051.	4.1	84
39	Intramuscular Injection of AAV8 in Mice and Macaques Is Associated with Substantial Hepatic Targeting and Transgene Expression. PLoS ONE, 2014, 9, e112268.	2.5	47
40	AAV8 Induces Tolerance in Murine Muscle as a Result of Poor APC Transduction, T Cell Exhaustion, and Minimal MHCI Upregulation on Target Cells. Molecular Therapy, 2014, 22, 28-41.	8.2	50
41	Formation of Newly Synthesized Adeno-Associated Virus Capsids in the Cell Nucleus. Human Gene Therapy Methods, 2014, 25, 179-180.	2.1	0
42	Liver-directed gene therapy corrects cardiovascular lesions in feline mucopolysaccharidosis type I. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14894-14899.	7.1	42
43	Intrathecal Gene Therapy Corrects CNS Pathology in a Feline Model of Mucopolysaccharidosis I. Molecular Therapy, 2014, 22, 2018-2027.	8.2	89
44	Inverse zonation of hepatocyte transduction with AAV vectors between mice and non-human primates. Molecular Genetics and Metabolism, 2011, 104, 395-403.	1.1	58
45	Evaluation of Adeno-Associated Viral Vectors for Liver-Directed Gene Transfer in Dogs. Human Gene Therapy, 2011, 22, 985-997.	2.7	35
46	Adeno-Associated Virus-Mediated Gene Transfer to Nonhuman Primate Liver Can Elicit Destructive Transgene-Specific T Cell Responses. Human Gene Therapy, 2009, 20, 930-942.	2.7	88
47	A Comparative Analysis of Novel Fluorescent Proteins as Reporters for Gene Transfer Studies. Journal of Histochemistry and Cytochemistry, 2007, 55, 931-939.	2.5	24
48	Analysis of Tumors Arising in Male B6C3F1 Mice with and without AAV Vector Delivery to Liver. Molecular Therapy, 2006, 14, 34-44.	8.2	137
49	No Evidence for Tumorigenesis of AAV Vectors in a Large-Scale Study in Mice. Molecular Therapy, 2005, 12, 299-306.	8.2	103