
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4990614/publications.pdf Version: 2024-02-01

ΥΟΝΟΟΛΝΟ ΖΗΠ

#	Article	IF	CITATIONS
1	Carbon-Based Supercapacitors Produced by Activation of Graphene. Science, 2011, 332, 1537-1541.	6.0	5,528
2	Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics, 2010, 50, 273-279.	2.1	243
3	Growth of g-C 3 N 4 on mesoporous TiO 2 spheres with high photocatalytic activity under visible light irradiation. Applied Catalysis B: Environmental, 2016, 188, 342-350.	10.8	167
4	Electrospun antibacterial nanofibers: Production, activity, and <i>in vivo</i> applications. Journal of Applied Polymer Science, 2014, 131, .	1.3	136
5	Analogy between predictions of Kolmogorov and Yaglom. Journal of Fluid Mechanics, 1997, 332, 395-409.	1.4	115
6	On the mechanism of air entrainment by liquid jets at a free surface. Journal of Fluid Mechanics, 2000, 404, 151-177.	1.4	104
7	Effect of concentrated wall suction on a turbulent boundary layer. Physics of Fluids, 1995, 7, 2465-2474.	1.6	98
8	Evaluation of photovoltaic panel temperature in realistic scenarios. Energy Conversion and Management, 2016, 108, 60-67.	4.4	81
9	A simple, fast and low-cost turn-on fluorescence method for dopamine detection using in situ reaction. Analytica Chimica Acta, 2016, 944, 51-56.	2.6	76
10	Passive acoustic bubble sizing in sparged systems. Experiments in Fluids, 2001, 30, 672-682.	1.1	74
11	Detection of 100 aM Fluorophores Using a High-Sensitivity On-Chip CE System and Transient Isotachophoresis. Analytical Chemistry, 2007, 79, 345-349.	3.2	73
12	Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device. Lab on A Chip, 2014, 14, 2993.	3.1	73
13	Refined similarity hypotheses for turbulent velocity and temperature fields. Physics of Fluids, 1995, 7, 1637-1648.	1.6	71
14	Three-component vorticity measurements in a turbulent grid flow. Journal of Fluid Mechanics, 1998, 374, 29-57.	1.4	66
15	Capillary flow in microchannels. Microfluidics and Nanofluidics, 2010, 8, 275-282.	1.0	66
16	Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling. Solar Energy Materials and Solar Cells, 2020, 208, 110393.	3.0	62
17	On the measurement of lateral velocity derivatives in turbulent flows. Experiments in Fluids, 1993, 15, 65-69.	1.1	59
18	A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract. Lab on A Chip, 2009, 9, 3391.	3.1	59

#	Article	IF	CITATIONS
19	Multiplexed detection of cancer biomarkers using a microfluidic platform integrating single bead trapping and acoustic mixing techniques. Nanoscale, 2018, 10, 20196-20206.	2.8	55
20	FRET for lab-on-a-chip devices — current trends and future prospects. Lab on A Chip, 2010, 10, 1355.	3.1	54
21	Impeller Geometry Effect on Velocity and Solids Suspension. Chemical Engineering Research and Design, 2001, 79, 989-997.	2.7	53
22	Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay. Nanoscale, 2017, 9, 7822-7829.	2.8	53
23	A continuous wavelet transform algorithm for peak detection. Electrophoresis, 2008, 29, 4215-4225.	1.3	52
24	Positioning an individual metal–organic framework particle using a magnetic field. Journal of Materials Chemistry C, 2013, 1, 42-45.	2.7	51
25	On-chip high-throughput manipulation of particles in a dielectrophoresis-active hydrophoretic focuser. Scientific Reports, 2014, 4, 5060.	1.6	46
26	Effect of wire separation on X-probe measurements in a turbulent flow. Journal of Fluid Mechanics, 1995, 287, 199-223.	1.4	45
27	Sensitive label-free oligonucleotide-based microfluidic detection of mercury (II) ion by using exonuclease I. Biosensors and Bioelectronics, 2012, 31, 330-336.	5.3	43
28	Measurement of Gas-Liquid Mass Transfer in an Agitated Vessel. A Comparison between Different Impellers Journal of Chemical Engineering of Japan, 2001, 34, 579-584.	0.3	42
29	Novel Wax Valves To Improve Distance-Based Analyte Detection in Paper Microfluidics. Analytical Chemistry, 2019, 91, 5169-5175.	3.2	42
30	Effective thermal conductivity of high porosity open-cell metal foams. International Journal of Heat and Mass Transfer, 2020, 147, 118974.	2.5	42
31	Theoretical investigation of broadband absorption enhancement in a-Si thin-film solar cell with nanoparticles. Solar Energy Materials and Solar Cells, 2020, 211, 110529.	3.0	38
32	Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling. Solar Energy Materials and Solar Cells, 2020, 211, 110548.	3.0	37
33	Production of monodispersed micron-sized bubbles at high rates in a microfluidic device. Applied Physics Letters, 2009, 95, .	1.5	36
34	Cell elasticity measurement using a microfluidic device with real-time pressure feedback. Lab on A Chip, 2020, 20, 2343-2353.	3.1	36
35	The spatial resolution of hot-wire arrays for the measurement of small-scale turbulence. Measurement Science and Technology, 1996, 7, 1349-1359.	1.4	35
36	Rapid detection of Hendra virus antibodies: an integrated device with nanoparticle assay and chaotic micromixing. Lab on A Chip, 2017, 17, 169-177.	3.1	35

#	Article	IF	CITATIONS
37	Current progress in long-term and continuous cell metabolite detection using microfluidics. TrAC - Trends in Analytical Chemistry, 2019, 117, 263-279.	5.8	35
38	A hybrid dielectrophoretic and hydrophoretic microchip for particle sorting using integrated prefocusing and sorting steps. Electrophoresis, 2015, 36, 284-291.	1.3	34
39	Construction of porous N-doped graphene layer for efficient oxygen reduction reaction. Chemical Engineering Science, 2019, 194, 36-44.	1.9	34
40	Lateral vorticity measurements in a turbulent wake. Journal of Fluid Mechanics, 1996, 323, 173-200.	1.4	33
41	Critical Impeller Speed for Suspending Solids in Aerated Agitation Tanks. Canadian Journal of Chemical Engineering, 2002, 80, 1-6.	0.9	32
42	Experimental studies of hydrocarbon separation on zeolites, activated carbons and MOFs for applications in natural gas processing. RSC Advances, 2017, 7, 12629-12638.	1.7	32
43	Soft piezoresistive pressure sensing matrix from copper nanowires composite aerogel. Science Bulletin, 2016, 61, 1624-1630.	4.3	31
44	Microfluidic models of physiological or pathological flow shear stress for cell biology, disease modeling and drug development. TrAC - Trends in Analytical Chemistry, 2019, 117, 186-199.	5.8	31
45	The effect of impeller pumping and fluid rheology on solids suspension in a stirred vessel. Canadian Journal of Chemical Engineering, 2001, 79, 177-186.	0.9	30
46	Dynamic screening and printing of single cells using a microfluidic chip with dual microvalves. Lab on A Chip, 2020, 20, 1227-1237.	3.1	30
47	Spatial resolution of a 4-X-wire vorticity probe. Measurement Science and Technology, 1996, 7, 1492-1497.	1.4	28
48	Thermal performance enhancement of phase change material heat sinks for thermal management of electronic devices under constant and intermittent power loads. International Journal of Heat and Mass Transfer, 2021, 181, 121899.	2.5	28
49	An integrated dielectrophoresis-active hydrophoretic microchip for continuous particle filtration and separation. Journal of Micromechanics and Microengineering, 2015, 25, 084010.	1.5	26
50	Janus Nanoparticles with Tunable Amphiphilicity for Stabilizing Pickering-Emulsion Droplets via Assembly Behavior at Oil–Water Interfaces. ACS Applied Materials & Interfaces, 2020, 12, 26374-26383.	4.0	26
51	Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate. Scientific Reports, 2016, 6, 24972.	1.6	25
52	Preparation and antifouling property of polyurethane film modified by chondroitin sulfate. Applied Surface Science, 2017, 394, 403-413.	3.1	24
53	Mixing mechanism of a straight channel micromixer based on light-actuated oscillating electroosmosis in low-frequency sinusoidal AC electric field. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	24
54	Comparison between the sum of secondâ€order velocity structure functions and the secondâ€order temperature structure function. Physics of Fluids, 1996, 8, 3105-3111.	1.6	23

#	Article	IF	CITATIONS
55	Chaotic micromixing in open wells using audio-frequency acoustic microstreaming. BioTechniques, 2009, 47, 827-834.	0.8	23
56	Determination of Lead(II) Using Screenâ€Printed Bismuthâ€Antimony Film Electrode. Electroanalysis, 2013, 25, 1446-1452.	1.5	23
57	Influence of charge compensating cations on propane adsorption in X zeolites: experimental measurement and mathematical modeling. RSC Advances, 2014, 4, 7279.	1.7	23
58	Real-time, continuous detection of maltose using bioluminescence resonance energy transfer (BRET) on a microfluidic system. Biosensors and Bioelectronics, 2014, 62, 177-181.	5.3	23
59	Corrections for spatial velocity derivatives in a turbulent shear flow. Experiments in Fluids, 1994, 16, 411-413.	1.1	22
60	Management of the diffusion of 4â€methylumbelliferone across phases in microdropletâ€based systems for in vitro protein evolution. Electrophoresis, 2010, 31, 3121-3128.	1.3	21
61	A Simple Microfluidic Chip Design for Fundamental Bioseparation. Journal of Analytical Methods in Chemistry, 2014, 2014, 1-6.	0.7	21
62	High-Throughput Functional Screening of Antigen-Specific T Cells Based on Droplet Microfluidics at a Single-Cell Level. Analytical Chemistry, 2022, 94, 918-926.	3.2	21
63	An automated measurement technique for slurry settling tests. Minerals Engineering, 2000, 13, 765-772.	1.8	20
64	Combined multi-band infrared camouflage and thermal management via a simple multilayer structure design. Optics Letters, 2021, 46, 5224.	1.7	20
65	Fourth-order moments of longitudinal- and transverse-velocity structure functions. Europhysics Letters, 1997, 37, 85-90.	0.7	19
66	Enzyme synthesis and activity assay in microfluidic droplets on a chip. Engineering in Life Sciences, 2011, 11, 157-164.	2.0	19
67	Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor. Inorganic Chemistry Communication, 2019, 104, 98-104.	1.8	19
68	Application of dry film resist in the fabrication of microfluidic chips for droplet generation. Journal of Micromechanics and Microengineering, 2009, 19, 065019.	1.5	18
69	Rapid and specific detection of Tilletia indica using loop-mediated isothermal DNA amplification. Australasian Plant Pathology, 2016, 45, 361-367.	0.5	18
70	Cavitation microstreaming and material transport around microbubbles. Physics Procedia, 2010, 3, 427-432.	1.2	17
71	Enhancing wicking microflows in metallic foams. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	17
72	Modelling and measurement of multi-phase hydrodynamics in the Outotec flotation cell. Minerals Engineering, 2019, 144, 106033.	1.8	17

#	Article	IF	CITATIONS
73	Acoustic micromixing increases antibody-antigen binding in immunoassays. Biomedical Microdevices, 2015, 17, 79.	1.4	16
74	Development of a novel magnetophoresis-assisted hydrophoresis microdevice for rapid particle ordering. Biomedical Microdevices, 2016, 18, 54.	1.4	16
75	Thermal management of solar cells using a nano-coated heat pipe plate: an indoor experimental study. International Journal of Energy Research, 2017, 41, 867-876.	2.2	16
76	Determining the value of cooling in photovoltaics for enhanced energy yield. Solar Energy, 2018, 159, 337-345.	2.9	16
77	Review and a Theoretical Approach on Pressure Drop Correlations of Flow through Open-Cell Metal Foam. Materials, 2021, 14, 3153.	1.3	16
78	Minimizing Impeller Slurry Wear through Multilayer Paint Modelling. Canadian Journal of Chemical Engineering, 2008, 83, 835-842.	0.9	15
79	A double-emulsion microfluidic platform for <i>in vitro</i> green fluorescent protein expression. Journal of Micromechanics and Microengineering, 2011, 21, 054032.	1.5	15
80	A Parametric Study of a Monolithic Microfluidic System for On-Chip Biomolecular Separation. Separation Science and Technology, 2014, 49, 854-860.	1.3	15
81	Ready… set, flow: simple fabrication of microdroplet generators and their use in the synthesis of PolyHIPE microspheres. Journal of Micromechanics and Microengineering, 2015, 25, 035011.	1.5	15
82	Effect of surface efficiency on the thermal design of plate-fin heat exchangers with passages stack arrangement. International Journal of Heat and Mass Transfer, 2019, 143, 118494.	2.5	15
83	Microflow in a rhythmically expanding alveolar chip with dynamic similarity. Lab on A Chip, 2020, 20, 2394-2402.	3.1	15
84	Fullâ€Spectrum Absorption Enhancement in aâ€Si:H Thinâ€Film Solar Cell with a Composite Lightâ€Trapping Structure. Solar Rrl, 2021, 5, 2000524.	3.1	15
85	On the correlation between enstrophy and energy dissipation rate in a turbulent wake. Flow, Turbulence and Combustion, 1996, 57, 337-347.	0.2	14
86	Hybridizing TiO ₂ with Nitrogenâ€Doped Carbon: A New Route to A Highly Visible Lightâ€Active Photocatalyst. ChemistrySelect, 2017, 2, 1565-1572.	0.7	14
87	Scaling of mean square vorticity in turbulent flows. Experiments in Fluids, 1996, 20, 393-394.	1.1	13
88	A rapid assay for Hendra virus IgG antibody detection and its titre estimation using magnetic nanoparticles and phycoerythrin. Journal of Virological Methods, 2015, 222, 170-177.	1.0	13
89	Development of micropillar array electrodes for highly sensitive detection of biomarkers. RSC Advances, 2020, 10, 41110-41119.	1.7	13
90	A note on the vorticity spectrum. Physics of Fluids, 1996, 8, 2196-2202.	1.6	12

#	Article	IF	CITATIONS
91	Solids suspension with axial-flow impellers. AICHE Journal, 2000, 46, 647-650.	1.8	12
92	Reproducible bubble-induced acoustic microstreaming for bead disaggregation and immunoassay in microfluidics. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	12
93	Recent advances in microdroplet techniques for single-cell protein analysis. TrAC - Trends in Analytical Chemistry, 2021, 143, 116411.	5.8	12
94	Intermittency of vorticity in a turbulent shear flow. Physics of Fluids, 1996, 8, 2245-2247.	1.6	11
95	Turbulent Pressure Structure Function. Physical Review Letters, 1996, 77, 2222-2224.	2.9	11
96	Lab-on-a-chip in Vitro Compartmentalization Technologies for Protein Studies. Advances in Biochemical Engineering/Biotechnology, 2008, 110, 81-114.	0.6	11
97	Comparison of Static and Microfluidic Protease Assays Using Modified Bioluminescence Resonance Energy Transfer Chemistry. PLoS ONE, 2014, 9, e88399.	1.1	11
98	Sub-nanomolar detection of thrombin activity on a microfluidic chip. Biomicrofluidics, 2014, 8, 064110.	1.2	11
99	A rapidly settled closed-loop control for airfoil aerodynamics based on plasma actuation. Experiments in Fluids, 2015, 56, 1.	1.1	11
100	An Integrated Portable Multiplex Microchip Device for Fingerprinting Chemical Warfare Agents. Micromachines, 2019, 10, 617.	1.4	11
101	Investigation on Microparticle Transport and Deposition Mechanics in Rhythmically Expanding Alveolar Chip. Micromachines, 2021, 12, 184.	1.4	11
102	Temperature dissipation measurements in a fully developed turbulent channel flow. Experiments in Fluids, 1993, 15, 191-199.	1.1	10
103	The spatial resolution of two X-probes for velocity derivative measurements. Measurement Science and Technology, 1995, 6, 538-549.	1.4	10
104	A microfluidic needle for sampling and delivery of chemical signals by segmented flows. Applied Physics Letters, 2017, 111, 183702.	1.5	10
105	Electrochemical Performance of Micropillar Array Electrodes in Microflows. Micromachines, 2020, 11, 858.	1.4	10
106	Making a hydrophoretic focuser tunable using a diaphragm. Biomicrofluidics, 2014, 8, 064115.	1.2	9
107	Automatic flow delay through passive wax valves for paper-based analytical devices. Lab on A Chip, 2021, 21, 4166-4176.	3.1	9
108	Continuous separation of microparticles based on optically induced dielectrophoresis. Microfluidics and Nanofluidics, 2022, 26, 1.	1.0	9

#	Article	IF	CITATIONS
109	Comparison of gas hold-up distribution measurement in a flotation cell using capturing and conductivity techniques. Minerals Engineering, 2006, 19, 1362-1372.	1.8	7
110	Increasing cDNA Yields from Single-cell Quantities of mRNA in Standard Laboratory Reverse Transcriptase Reactions using Acoustic Microstreaming. Journal of Visualized Experiments, 2011, , e3144.	0.2	7
111	Study of inhibitory effect of mercury(ii) ion on exonuclease iiivia gel electrophoresis and microfluidic electrophoresis. Analytical Methods, 2012, 4, 2846.	1.3	7
112	New insight into air flow distribution in alveoli based on air- and saline-filled lungs. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	7
113	Recent advances in the understanding of alveolar flow. Biomicrofluidics, 2022, 16, 021502.	1.2	7
114	Effects of surfactants on the formation of microdroplets in the flow focusing microfluidic device. Proceedings of SPIE, 2007, , .	0.8	6
115	Microfluidic Droplet Technique for In Vitro Directed Evolution. Australian Journal of Chemistry, 2010, 63, 1313.	0.5	6
116	Inertial range behaviour of the longitudinal heat flux cospectrum. Boundary-Layer Meteorology, 1994, 70, 429-434.	1.2	5
117	Performance of a transverse vorticity probe in a turbulent channel flow. Experiments in Fluids, 1998, 24, 510-517.	1.1	5
118	Transport of turbulent vorticity increments. Physical Review E, 1998, 57, 5483-5488.	0.8	5
119	Performance of a three-component vorticity probe in a turbulent far-wake. Experiments in Fluids, 1999, 27, 21-30.	1.1	5
120	A few new findings on phase inversion in a liquid/liquid system. AICHE Journal, 2004, 50, 3281-3283.	1.8	5
121	Measurement of microbubble-induced acoustic microstreaming using microparticle image velocimetry. , 2005, 5651, 336.		5
122	Influence of flow rate on the droplet generation process in a microfluidic chip. Proceedings of SPIE, 2011, , .	0.8	5
123	Micro segmented flow-functional elements and biotechnical applications. Frontiers in Bioscience - Scholar, 2013, S5, 284-304.	0.8	5
124	Arrays of polyacrylamide hydrogels using a carbodiimideâ€mediated crosslinking reaction. Journal of Applied Polymer Science, 2014, 131, .	1.3	5
125	Enhanced Near-Field Radiative Heat Transport between Graphene Metasurfaces with Symmetric Nanopatterns. Physical Review Applied, 2020, 14, .	1.5	5
126	Hybrid grid—a specialized mesh system for full three-dimensional numerical simulation in natural waters. Mathematical and Computer Modelling, 1997, 26, 81-95.	2.0	4

YONGGANG ZHU

#	Article	IF	CITATIONS
127	Effect of norbornene content on deformation properties and hot embossing of cyclic olefin copolymers. Journal of Materials Science, 2010, 45, 5364-5369.	1.7	4
128	Microfabricated needle for hydrogen peroxide detection. RSC Advances, 2019, 9, 18176-18181.	1.7	4
129	Fullâ€Spectrum Absorption Enhancement in aâ€Si:H Thinâ€Film Solar Cell with a Composite Lightâ€Trapping Structure. Solar Rrl, 2021, 5, 2170034.	3.1	4
130	The method to dynamically screen and print single cells using microfluidics with pneumatic microvalves. MethodsX, 2021, 8, 101190.	0.7	4
131	Microparticle Transport and Sedimentation in a Rhythmically Expanding Alveolar Chip. Micromachines, 2022, 13, 485.	1.4	4
132	Statistics of â^,u/â^,y in a turbulent wake. Fluid Dynamics Research, 1997, 19, 169-183.	0.6	3
133	Passive Scalar Transport in a Turbulent Cylinder Wake in the Presence of a Downstream Cylinder. Flow, Turbulence and Combustion, 2004, 72, 449-461.	1.4	3
134	Acoustic microstreaming applied to batch micromixing. , 2005, 6036, 485.		3
135	Enhanced near-field radiation in both TE and TM waves through excitation of Mie resonance. Physical Review B, 2020, 102, .	1.1	3
136	Reply to the â€~Comment on "Microflow in a rhythmically expanding alveolar chip with dynamic similarityâ€â€™ by A. Tsuda and F. S. Henry, <i>Lab Chip</i> , 2021, 21 , DOI: 10.1039/D0LC00884B. Lab A Chip, 2021, 21, 1431-1432.	08.1	3
137	The method to quantify cell elasticity based on the precise measurement of pressure inducing cell deformation in microfluidic channels. MethodsX, 2021, 8, 101247.	0.7	3
138	Twoâ€point velocity and vorticity correlations for axisymmetric turbulence. Physics of Fluids, 1996, 8, 838-840.	1.6	2
139	Detection of inorganic ions on a capillary electrophoresis microchip using a conductivity technique. , 2006, , .		2
140	Capillary electrophoresis (CE) peak detection using a wavelet transform technique. , 2008, , .		2
141	Characteristics of T-cell receptor repertoire of stem cell-like memory CD4+ T cells. PeerJ, 2021, 9, e11987.	0.9	2
142	Correlation between the Enstrophy and the Energy Dissipation Rate in a Turbulent Wake. Fluid Mechanics and Its Applications, 1996, , 507-510.	0.1	2
143	Dissipation estimates in turbulent flows using the zero-wire-length technique. Experiments in Fluids, 1991, 11-11, 197-199.	1.1	1

144 Thermal modeling of a microheater in a microchannel chip. , 2005, , .

#	Article	IF	CITATIONS
145	Hand-held analyser based on microchip electrophoresis with contactless conductivity detection for measurement of chemical warfare agent degradation products. Proceedings of SPIE, 2008, , .	0.8	1
146	Rapid prototyping of microfluidic chips for use in droplet formation and in-vitro compartmentalisation. Proceedings of SPIE, 2008, , .	0.8	1
147	Novel model for iteration step selection in image denoising using total variation technique. Imaging Science Journal, 2010, 58, 222-230.	0.2	1
148	Tailored surface roughnesses for enhanced deposition of fine liquid droplets from a flowing gas. Chemical Engineering Research and Design, 2013, 91, 2369-2376.	2.7	1
149	Bubble-induced acoustic mixing in a microfluidic device. Proceedings of SPIE, 2015, , .	0.8	1
150	Enzyme Assay in Microfluidics. , 2014, , 1-8.		1
151	Flapping Motion of a Turbulent Jet Under the Asymmetric Excitation of Two Unsteady Minijets. Lecture Notes in Mechanical Engineering, 2016, , 259-264.	0.3	1
152	Joule heating in polymer microfluidic chip. , 2005, , .		0
153	Capillary flow in polymer microfluidic chips. , 2006, 6416, 138.		0
154	Improving Gas Distribution through Agitator and Gas Sparger Modification in an Autoclave Model. Journal of Chemical Engineering of Japan, 2007, 40, 213-216.	0.3	0
155	Gas/Liquid Mass Transfer in Hot Sparged Systems. Asia-Pacific Journal of Chemical Engineering, 2004, 12, 323-332.	0.0	0
156	Microfluidic production of ultrasound contrast agents with a capillary gas jet PDMS microchip. , 2008, , .		0
157	Signal Processing Methods for Capillary Electrophoresis. , 0, , .		0
158	Identification of chemical warfare agents using a portable microchip-based detection device. Proceedings of SPIE, 2011, , .	0.8	0
159	Capillary flow in microfluidic Hele-Shaw cells. Proceedings of SPIE, 2011, , .	0.8	0
160	Integrated microdroplet-based system for enzyme synthesis and sampling. , 2013, , .		0
161	How to fabricate robust microfluidic systems for a dollar. Proceedings of SPIE, 2013, , .	0.8	0