David Cherns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4990418/publications.pdf Version: 2024-02-01

DAVID CHERNS

#	Article	IF	CITATIONS
1	A macro-scale ruck and tuck mechanism for deformation in ion-irradiated polycrystalline graphite. Carbon, 2021, 173, 215-231.	10.3	27
2	Synthetic Mechanism Studies of Iron Selenides: An Emerging Class of Materials for Electrocatalysis. Catalysts, 2021, 11, 681.	3.5	5
3	Crystal and Electronic Structure of Bismuth Thiophosphate, BiPS ₄ : An Earth-Abundant Solar Absorber. Chemistry of Materials, 2020, 32, 1235-1242.	6.7	19
4	Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Communications Physics, 2019, 2, .	5.3	129
5	Nano-cracks in a synthetic graphite composite for nuclear applications. Philosophical Magazine, 2018, 98, 1272-1283.	1.6	13
6	Direct Observation of High Densities of Antisite Defects in Ag ₂ ZnSnSe ₄ . ACS Applied Energy Materials, 2018, 1, 6260-6267.	5.1	14
7	Managing dose-, damage- and data-rates in multi-frame spectrum-imaging. Microscopy (Oxford,) Tj ETQq1 1 0	.784314 rgB ⁻ 1.5	「/Overlock] 42
8	Cu ₂ ZnSnS ₄ Thin Films Generated from a Single Solution Based Precursor: The Effect of Na and Sb Doping. Chemistry of Materials, 2016, 28, 4991-4997.	6.7	65
9	Electronic and optical properties of single crystal SnS ₂ : an earth-abundant disulfide photocatalyst. Journal of Materials Chemistry A, 2016, 4, 1312-1318.	10.3	246
10	Structural and Optical Emission Uniformity of <i>m</i> -Plane InGaN Single Quantum Wells in Core–Shell Nanorods. Crystal Growth and Design, 2016, 16, 1907-1916.	3.0	26
11	Rapid phosphine-free synthesis of CdSe quantum dots: promoting the generation of Se precursors using a radical initiator. Journal of Materials Chemistry A, 2014, 2, 6879-6886.	10.3	31
12	Transmission electron microscopy of indium gallium nitride nanorods grown by molecular beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 417-420.	0.8	7
13	Characterisation of 3Dâ€GaN/InGaN coreâ€shell nanostructures by transmission electron microscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 425-427.	0.8	9
14	Density of Deep Trap States in Oriented TiO ₂ Nanotube Arrays. Journal of Physical Chemistry C, 2014, 118, 18207-18213.	3.1	73
15	Continuous-Flow MOVPE of Ga-Polar GaN Column Arrays and Core–Shell LED Structures. Crystal Growth and Design, 2013, 13, 3475-3480.	3.0	80
16	Structure and Band Edge Energy of Highly Luminescent CdSe _{1–<i>x</i>} Te _{<i>x</i>} Alloyed Quantum Dots. Journal of Physical Chemistry C, 2013, 117, 6814-6820.	3.1	60
17	The Li-adsorbed C(100)-(1x1):O Diamond Surface. Materials Research Society Symposia Proceedings, 2011, 1282, 163.	0.1	8
18	Lithium monolayers on single crystal C(100) oxygen-terminated diamond. Materials Research Society Symposia Proceedings, 2011, 1282, 169.	0.1	5

DAVID CHERNS

#	Article	IF	CITATIONS
19	Variations in mechanisms of selective area growth of GaN on nanoâ€patterned substrates by MOVPE. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 32-35.	0.8	19
20	Characterization of (Mn, Co)-Codoped ZnO Nanorods Prepared by Thermal Diffusion. IEEE Transactions on Magnetics, 2009, 45, 2435-2438.	2.1	4
21	Enhancement of multiple-phonon resonant Raman scattering in Co-doped ZnO nanorods. Applied Physics Letters, 2008, 93, .	3.3	46
22	Reduction of threading dislocations in ZnO/(0001) sapphire film heterostructure by epitaxial lateral overgrowth of nanorods. Journal of Applied Physics, 2008, 104, .	2.5	21
23	New method of reducing threading dislocation in epitaxial ZnO films grown on c-sapphire. Materials Research Society Symposia Proceedings, 2007, 1035, 1.	0.1	Ο
24	The Structure of Dislocations in GaN Grown by MBE as a Function of the Gallium to Nitrogen Ratio. Materials Research Society Symposia Proceedings, 2003, 798, 754.	0.1	0
25	The Effect of Growth Stoichiometry on the GaN Dislocation Core Structure. Materials Research Society Symposia Proceedings, 2002, 743, L2.5.1.	0.1	4
26	Chemical Analysis of Ternary Semiconductors by Critical Voltage Measurements. Materials Research Society Symposia Proceedings, 1988, 138, 563.	0.1	0