Guang-Xing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4990376/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Prediction and analysis of residential house price using a flexible spatiotemporal model. Journal of Applied Economics, 2022, 25, 503-522.	0.6	3
2	Editorial Summary, Remote Sensing Special Issue "Advances in Remote Sensing for Global Forest Monitoring― Remote Sensing, 2021, 13, 597.	1.8	2
3	Developing an individual tree diameter increment model of oaks using indicator variables and mixed effects in central China. Scandinavian Journal of Forest Research, 2021, 36, 297-305.	0.5	1
4	Assessing the impacts of anthropogenic drainage structures on hydrologic connectivity using highâ€resolution digital elevation models. Transactions in GIS, 2021, 25, 2596-2611.	1.0	2
5	Examining phenological variation of on-year and off-year bamboo forests based on the vegetation and environment monitoring on a New Micro-Satellite (VENµS) time-series data. International Journal of Remote Sensing, 2021, 42, 2203-2219.	1.3	13
6	Classification and Feature Extraction for Hydraulic Structures Data Using Advanced CNN Architectures. , 2021, , .		2
7	Improving Estimation of Forest Canopy Cover by Introducing Loss Ratio of Laser Pulses Using Airborne LiDAR. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 567-585.	2.7	13
8	Prediction of Individual Tree Diameter and Height to Crown Base Using Nonlinear Simultaneous Regression and Airborne LiDAR Data. Remote Sensing, 2020, 12, 2238.	1.8	13
9	Estimating the Growing Stem Volume of the Planted Forest Using the General Linear Model and Time Series Quad-Polarimetric SAR Images. Sensors, 2020, 20, 3957.	2.1	8
10	Crop Growth Stage GPP-Driven Spectral Model for Evaluation of Cultivated Land Quality Using GA-BPNN. Agriculture (Switzerland), 2020, 10, 318.	1.4	21
11	Analysis of the Spatial Differences in Canopy Height Models from UAV LiDAR and Photogrammetry. Remote Sensing, 2020, 12, 2884.	1.8	10
12	Estimating the Growing Stem Volume of Coniferous Plantations Based on Random Forest Using an Optimized Variable Selection Method. Sensors, 2020, 20, 7248.	2.1	24
13	Deep Learning Segmentation and Classification for Urban Village Using a Worldview Satellite Image Based on U-Net. Remote Sensing, 2020, 12, 1574.	1.8	88
14	Improving Estimation of Soil Moisture Content Using a Modified Soil Thermal Inertia Model. Remote Sensing, 2020, 12, 1719.	1.8	7
15	A Modified KNN Method for Mapping the Leaf Area Index in Arid and Semi-Arid Areas of China. Remote Sensing, 2020, 12, 1884.	1.8	23
16	Design of an Integrated Remote and Ground Sensing Monitor System for Assessing Farmland Quality. Sensors, 2020, 20, 336.	2.1	1
17	Estimating the Growing Stem Volume of Chinese Pine and Larch Plantations based on Fused Optical Data Using an Improved Variable Screening Method and Stacking Algorithm. Remote Sensing, 2020, 12, 871.	1.8	23
18	Prediction of Individual Tree Diameter Using a Nonlinear Mixed-Effects Modeling Approach and Airborne LiDAR Data. Remote Sensing, 2020, 12, 1066.	1.8	19

#	Article	IF	CITATIONS
19	Estimating aboveground biomass of Pinus densata-dominated forests using Landsat time series and permanent sample plot data. Journal of Forestry Research, 2019, 30, 1689-1706.	1.7	24
20	Estimation of Soil Heavy Metal Content Using Hyperspectral Data. Remote Sensing, 2019, 11, 1464.	1.8	40
21	Mapping Growing Stem Volume of Chinese Fir Plantation Using a Saturation-based Multivariate Method and Quad-polarimetric SAR Images. Remote Sensing, 2019, 11, 1872.	1.8	18
22	Prediction of Soil Nutrient Contents Using Visible and Near-Infrared Reflectance Spectroscopy. ISPRS International Journal of Geo-Information, 2019, 8, 437.	1.4	40
23	Airborne LIDAR-Derived Aboveground Biomass Estimates Using a Hierarchical Bayesian Approach. Remote Sensing, 2019, 11, 1050.	1.8	5
24	A Regional Comparison of Factors Affecting Global Sorghum Production: The Case of North America, Asia and Africa's Sahel. Sustainability, 2019, 11, 2135.	1.6	98
25	Integrating a Hybrid Back Propagation Neural Network and Particle Swarm Optimization for Estimating Soil Heavy Metal Contents Using Hyperspectral Data. Sustainability, 2019, 11, 419.	1.6	35
26	Improving Aboveground Biomass Estimation of Pinus densata Forests in Yunnan Using Landsat 8 Imagery by Incorporating Age Dummy Variable and Method Comparison. Remote Sensing, 2019, 11, 738.	1.8	37
27	Characterizing urban redevelopment process by quantifying thermal dynamic and landscape analysis. Habitat International, 2019, 86, 61-70.	2.3	26
28	Estimation of Vegetation Productivity Using a Landsat 8 Time Series in a Heavily Urbanized Area, Central China. Remote Sensing, 2019, 11, 133.	1.8	23
29	Detection of short-term urban land use changes by combining SAR time series images and spectral angle mapping. Frontiers of Earth Science, 2019, 13, 495-509.	0.9	11
30	Improving the Estimation of Forest Carbon Density in Mountainous Regions Using Topographic Correction and Landsat 8 Images. Remote Sensing, 2019, 11, 2619.	1.8	2
31	The Optimal Image Date Selection for Evaluating Cultivated Land Quality Based on Gaofen-1 Images. Sensors, 2019, 19, 4937.	2.1	9
32	The GA-BPNN-Based Evaluation of Cultivated Land Quality in the PSR Framework Using Gaofen-1 Satellite Data. Sensors, 2019, 19, 5127.	2.1	21
33	A Probability-Based Spectral Unmixing Analysis for Mapping Percentage Vegetation Cover of Arid and Semi-Arid Areas. Remote Sensing, 2019, 11, 3038.	1.8	5
34	Current development of landscape geochemistry with support of geospatial technologies: A review. Critical Reviews in Environmental Science and Technology, 2019, 49, 745-790.	6.6	3
35	Improving Forest Aboveground Biomass Estimation of Pinus densata Forest in Yunnan of Southwest China by Spatial Regression using Landsat 8 Images. Remote Sensing, 2019, 11, 2750.	1.8	11
36	Detection of charcoal rot (Macrophomina phaseolina) toxin effects in soybean (Glycine max) seedlings using hyperspectral spectroscopy. Computers and Electronics in Agriculture, 2018, 150, 188-195.	3.7	11

#	Article	IF	CITATIONS
37	Examining soil organic carbon distribution and dynamic change in a hickory plantation region with Landsat and ancillary data. Catena, 2018, 165, 576-589.	2.2	24
38	Detection of gullies in Fort Riley military installation using LiDAR derived high resolution DEM. Journal of Terramechanics, 2018, 77, 15-22.	1.4	13
39	Estimation of net primary productivity of forests by modified CASA models and remotely sensed data. International Journal of Remote Sensing, 2018, 39, 1092-1116.	1.3	18
40	Prediction of soil properties using a hyperspectral remote sensing method. Archives of Agronomy and Soil Science, 2018, 64, 546-559.	1.3	27
41	The Impact of Vertical Wavenumber on Forest Height Inversion by PolInSAR. , 2018, , .		3
42	Impacts of Position Errors on Accuracy of Single Tree Volume Inversion of Cunninghamia lanceolata based on GF-2 Data. , 2018, , .		0
43	Mapping Paddy Rice Using a Convolutional Neural Network (CNN) with Landsat 8 Datasets in the Dongting Lake Area, China. Remote Sensing, 2018, 10, 1840.	1.8	90
44	A Rice Mapping Method Based on Time-Series Landsat Data for the Extraction of Growth Period Characteristics. Sustainability, 2018, 10, 2570.	1.6	9
45	Estimation Methods for Soil Mercury Content Using Hyperspectral Remote Sensing. Sustainability, 2018, 10, 2474.	1.6	46
46	Improving Selection of Spectral Variables for Vegetation Classification of East Dongting Lake, China, Using a Gaofen-1 Image. Remote Sensing, 2018, 10, 50.	1.8	12
47	Development of a System of Compatible Individual Tree Diameter and Aboveground Biomass Prediction Models Using Error-In-Variable Regression and Airborne LiDAR Data. Remote Sensing, 2018, 10, 325.	1.8	30
48	Comparative Analysis of Modeling Algorithms for Forest Aboveground Biomass Estimation in a Subtropical Region. Remote Sensing, 2018, 10, 627.	1.8	119
49	Optimizing kNN for Mapping Vegetation Cover of Arid and Semi-Arid Areas Using Landsat images. Remote Sensing, 2018, 10, 1248.	1.8	28
50	Modeling Urban PM2.5 Concentration by Combining Regression Models and Spectral Unmixing Analysis in a Region of East China. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	2
51	A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China. Forest Ecology and Management, 2017, 384, 34-43.	1.4	61
52	A climate-sensitive aboveground biomass model for three larch species in northeastern and northern China. Trees - Structure and Function, 2017, 31, 557-573.	0.9	28
53	Additive crown width models comprising nonlinear simultaneous equations for Prince Rupprecht larch (Larix principis-rupprechtii) in northern China. Trees - Structure and Function, 2017, 31, 1959-1971.	0.9	6
54	Mapping Forest Ecosystem Biomass Density for Xiangjiang River Basin by Combining Plot and Remote Sensing Data and Comparing Spatial Extrapolation Methods. Remote Sensing, 2017, 9, 241.	1.8	38

#	Article	IF	CITATIONS
55	Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation. Remote Sensing, 2016, 8, 469.	1.8	156
56	Multi-Resolution Mapping and Accuracy Assessment of Forest Carbon Density by Combining Image and Plot Data from a Nested and Clustering Sampling Design. Remote Sensing, 2016, 8, 571.	1.8	11
57	Comparison of seemingly unrelated regressions with error-in-variable models for developing a system of nonlinear additive biomass equations. Trees - Structure and Function, 2016, 30, 839-857.	0.9	42
58	Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. International Journal of Applied Earth Observation and Geoinformation, 2016, 53, 1-15.	1.4	85
59	A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 2016, 9, 63-105.	1.6	465
60	Increasing the Accuracy of Mapping Urban Forest Carbon Density by Combining Spatial Modeling and Spectral Unmixing Analysis. Remote Sensing, 2015, 7, 15114-15139.	1.8	33
61	Multilevel Nonlinear Mixed-Effect Crown Ratio Models for Individual Trees of Mongolian Oak (Quercus mongolica) in Northeast China. PLoS ONE, 2015, 10, e0133294.	1.1	23
62	Improvement of Forest Carbon Estimation by Integration of Regression Modeling and Spectral Unmixing of Landsat Data. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 2003-2007.	1.4	16
63	Comparison of methods toward multi-scale forest carbon mapping and spatial uncertainty analysis: combining national forest inventory plot data and landsat TM images. European Journal of Forest Research, 2015, 134, 125-137.	1.1	18
64	Phenology-based classification of vegetation cover types in Northeast China using MODIS NDVI and EVI time series. International Journal of Remote Sensing, 2015, 36, 489-512.	1.3	72
65	Generic linear mixed-effects individual-tree biomass models for <i>Pinus massoniana</i> in southern China. Southern Forests, 2014, 76, 47-56.	0.2	19
66	Spectral unmixing of MODIS data based on improved endmember purification model: application to forest type identification. , 2014, , .		0
67	Landscape metrics and change analysis of a national wildlife refuge at different spatial resolutions. International Journal of Remote Sensing, 2014, 35, 3109-3134.	1.3	14
68	Analysis of hyperspectral bands for the health diagnosis of tree species. , 2014, , .		2
69	Soil Organic Carbon and its Fractions in Relation to Degradation and Restoration of Wetlands on the Zoigê Plateau, China. Wetlands, 2014, 34, 235-241.	0.7	42
70	Can δ13C abundance, water-soluble carbon, and light fraction carbon be potential indicators of soil organic carbon dynamics in Zoigê wetland?. Catena, 2014, 119, 21-27.	2.2	18
71	Spatial and Temporal Assessment of Cumulative Disturbance Impacts Due to Military Training, Burning, Haying, and Their Interactions on Land Condition of Fort Riley. Environmental Management, 2014, 54, 51-66.	1.2	11
72	Impacts of Plot Location Errors on Accuracy of Mapping and Scaling Up Aboveground Forest Carbon Using Sample Plot and Landsat TM Data. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 1483-1487.	1.4	17

#	Article	IF	CITATIONS
73	Modeling and Prediction of Land Condition for Fort Riley Military Installation. Transactions of the ASABE, 2013, 56, 643-652.	1.1	8
74	Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. International Journal of Forestry Research, 2012, 2012, 1-16.	0.2	141
75	Environmental Condition Assessment of US Military Installations Using CIS Based Spatial Multi-Criteria Decision Analysis. Environmental Management, 2012, 50, 329-340.	1.2	12
76	Parallel spatiotemporal autocorrelation andÂvisualization system forÂlarge-scale remotely sensedÂimages. Journal of Supercomputing, 2012, 59, 83-103.	2.4	2
77	Uncertainties of mapping aboveground forest carbon due to plot locations using national forest inventory plot and remotely sensed data. Scandinavian Journal of Forest Research, 2011, 26, 360-373.	0.5	44
78	Mapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite images. Forest Ecology and Management, 2009, 258, 1275-1283.	1.4	63
79	Optimal spatial resolution for collection of ground data and multi-sensor image mapping of a soil erosion cover factor. Journal of Environmental Management, 2008, 88, 1088-1098.	3.8	15
80	Combining stratification and up-scaling method-block cokriging with remote sensing imagery for sampling and mapping an erosion cover factor. Ecological Informatics, 2007, 2, 373-386.	2.3	13
81	Spatial-variability-based algorithms for scaling-up spatial data and uncertainties. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42, 2004-2015.	2.7	21
82	Mapping and uncertainty of predictions based on multiple primary variables from joint co-simulation with Landsat TM image and polynomial regression. Remote Sensing of Environment, 2002, 83, 498-510.	4.6	42