List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4989823/publications.pdf Version: 2024-02-01

FALK NIMMEDIAHN

#	Article	IF	CITATIONS
1	FcÎ ³ receptors as regulators of immune responses. Nature Reviews Immunology, 2008, 8, 34-47.	10.6	2,406
2	Anti-Inflammatory Activity of Immunoglobulin G Resulting from Fc Sialylation. Science, 2006, 313, 670-673.	6.0	1,579
3	FcÎ ³ Receptors: Old Friends and New Family Members. Immunity, 2006, 24, 19-28.	6.6	980
4	Divergent Immunoglobulin G Subclass Activity Through Selective Fc Receptor Binding. Science, 2005, 310, 1510-1512.	6.0	932
5	Recapitulation of IVIG Anti-Inflammatory Activity with a Recombinant IgG Fc. Science, 2008, 320, 373-376.	6.0	748
6	Intravenous immunoglobulin therapy: how does IgG modulate the immune system?. Nature Reviews Immunology, 2013, 13, 176-189.	10.6	670
7	FcÎ ³ RIV: A Novel FcR with Distinct IgG Subclass Specificity. Immunity, 2005, 23, 41-51.	6.6	617
8	Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. Journal of Clinical Investigation, 2012, 122, 1791-1802.	3.9	606
9	Anti-Inflammatory Actions of Intravenous Immunoglobulin. Annual Review of Immunology, 2008, 26, 513-533.	9.5	487
10	Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of Fcl ³ RIIB and dectin-1. Nature Medicine, 2012, 18, 1401-1406.	15.2	405
11	Mechanisms of Autoantibody-Induced Pathology. Frontiers in Immunology, 2017, 8, 603.	2.2	377
12	Fcâ€Receptors as Regulators of Immunity. Advances in Immunology, 2007, 96, 179-204.	1.1	348
13	Regulation of autoantibody activity by the IL-23–TH17 axis determines the onset of autoimmune disease. Nature Immunology, 2017, 18, 104-113.	7.0	274
14	The antiinflammatory activity of IgG: the intravenous IgG paradox. Journal of Experimental Medicine, 2007, 204, 11-15.	4.2	261
15	Antibodyâ€mediated modulation of immune responses. Immunological Reviews, 2010, 236, 265-275.	2.8	257
16	Antibody isotype-specific engagement of FcÎ ³ receptors regulates B lymphocyte depletion during CD20 immunotherapy. Journal of Experimental Medicine, 2006, 203, 743-753.	4.2	238
17	Impact of Immune Complex Size and Glycosylation on IgG Binding to Human FcÎ ³ Rs. Journal of Immunology, 2013, 190, 4315-4323.	0.4	234
18	Intravenous immunoglobulin in neurology—mode of action and clinical efficacy. Nature Reviews Neurology, 2015, 11, 80-89.	4.9	228

#	Article	IF	CITATIONS
19	Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. Journal of Experimental Medicine, 2006, 203, 789-797.	4.2	227
20	Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proceedings of the United States of America, 2007, 104, 8433-8437.	3.3	227
21	Impaired inhibitory FcÎ ³ receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4788-4792.	3.3	220
22	Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nature Communications, 2015, 6, 6651.	5.8	212
23	Antibodies, Fc receptors and cancer. Current Opinion in Immunology, 2007, 19, 239-245.	2.4	208
24	Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes. Nature Methods, 2015, 12, 445-452.	9.0	193
25	Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1297-306.	3.3	190
26	FcγRIV deletion reveals its central role for IgC2a and IgC2b activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19396-19401.	3.3	168
27	FcÎ ³ R dependent mechanisms of cytotoxic, agonistic, and neutralizing antibody activities. Trends in Immunology, 2015, 36, 325-336.	2.9	157
28	Immune Monitoring of Trans-endothelial Transport by Kidney-Resident Macrophages. Cell, 2016, 166, 991-1003.	13.5	154
29	Inflammatory monocytes and FcÎ ³ receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10729-10734.	3.3	153
30	Differential antibody glycosylation in autoimmunity: sweet biomarker or modulator of disease activity?. Nature Reviews Rheumatology, 2017, 13, 621-630.	3.5	148
31	Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment. Science Immunology, 2016, 1, .	5.6	145
32	FcγRs in Health and Disease. Current Topics in Microbiology and Immunology, 2010, 350, 105-125.	0.7	131
33	Monocyte Subsets Responsible for Immunoglobulin G-Dependent Effector Functions InÂVivo. Immunity, 2011, 35, 932-944.	6.6	127
34	IgG Fc domains that bind C1q but not effector Fcl ³ receptors delineate the importance of complement-mediated effector functions. Nature Immunology, 2017, 18, 889-898.	7.0	122
35	Broad requirement for terminal sialic acid residues and FcÎ ³ RIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo. European Journal of Immunology, 2014, 44, 1444-1453.	1.6	115
36	CLEC10A Is a Specific Marker for Human CD1c+ Dendritic Cells and Enhances Their Toll-Like Receptor 7/8-Induced Cytokine Secretion. Frontiers in Immunology, 2018, 9, 744.	2.2	110

#	Article	IF	CITATIONS
37	<scp>IVI</scp> gâ€mediated amelioration of <scp>ITP</scp> in mice is dependent on sialic acid and <scp>SIGNR</scp> 1. European Journal of Immunology, 2012, 42, 826-830.	1.6	101
38	Genetic identification and functional validation of FcγRIV as key molecule in autoantibodyâ€induced tissue injury. Journal of Pathology, 2012, 228, 8-19.	2.1	89
39	A Monosaccharide Residue Is Sufficient to Maintain Mouse and Human IgG Subclass Activity and Directs IgG Effector Functions to Cellular Fc Receptors. Cell Reports, 2015, 13, 2376-2385.	2.9	86
40	Basophil-mediated protection against gastrointestinal helminths requires IgE-induced cytokine secretion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5169-E5177.	3.3	85
41	Fcγ receptor IIB (FcγRIIB) maintains humoral tolerance in the human immune system in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18772-18777.	3.3	74
42	Tumor location determines tissue-specific recruitment of tumor-associated macrophages and antibody-dependent immunotherapy response. Science Immunology, 2017, 2, .	5.6	71
43	FcÎ ³ Receptors III and IV Mediate Tissue Destruction in a Novel Adult Mouse Model of Bullous Pemphigoid. American Journal of Pathology, 2014, 184, 2185-2196.	1.9	66
44	Hierarchical and Redundant Roles of Activating Fcl̂ ³ Rs in Protection against Influenza Disease by M2e-Specific IgG1 and IgG2a Antibodies. Journal of Virology, 2017, 91, .	1.5	65
45	Antigen Delivery to CD11c+CD8â^ Dendritic Cells Induces Protective Immune Responses against Experimental Melanoma in Mice In Vivo. Journal of Immunology, 2014, 192, 5830-5838.	0.4	63
46	There Is (Scientific) Strength in Numbers: A Comprehensive Quantitation of Fc Gamma Receptor Numbers on Human and Murine Peripheral Blood Leukocytes. Frontiers in Immunology, 2020, 11, 118.	2.2	60
47	Suppression of FcÎ ³ -Receptor-Mediated Antibody Effector Function during Persistent Viral Infection. Immunity, 2015, 42, 379-390.	6.6	58
48	Translating basic mechanisms of IgG effector activity into next generation cancer therapies. Cancer Immunity, 2012, 12, 13.	3.2	58
49	Of Mice and Men: The Need for Humanized Mouse Models to Study Human IgG Activity in Vivo. Journal of Clinical Immunology, 2013, 33, 4-8.	2.0	56
50	Elucidating the interplay between IgG-Fc valency and FcÎ ³ R activation for the design of immune complex inhibitors. Science Translational Medicine, 2016, 8, 365ra158.	5.8	56
51	DC subset–specific induction of T cell responses upon antigen uptake via Fcγ receptors in vivo. Journal of Experimental Medicine, 2017, 214, 1509-1528.	4.2	53
52	Ethanol consumption inhibits TFH cell responses and the development of autoimmune arthritis. Nature Communications, 2020, 11, 1998.	5.8	48
53	A Humanized Mouse Identifies the Bone Marrow as a Niche with Low Therapeutic IgG Activity. Cell Reports, 2014, 7, 236-248.	2.9	47
54	B cells are critical for autoimmune pathology in Scurfy mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19042-19047.	3.3	43

#	Article	IF	CITATIONS
55	Role of sialylation in the anti-inflammatory activity of intravenous immunoglobulin - F(ab′) ₂ versus Fc sialylation. Clinical and Experimental Immunology, 2014, 178, 97-99.	1.1	42
56	IgG subclass and vaccination stimulus determine changes in antigen specific antibody glycosylation in mice. European Journal of Immunology, 2017, 47, 2070-2079.	1.6	41
57	Pathways Responsible for Human Autoantibody and Therapeutic Intravenous IgG Activity in Humanized Mice. Cell Reports, 2015, 13, 610-620.	2.9	38
58	Dissecting the mechanism of action of intravenous immunoglobulin in human autoimmune disease: Lessons from therapeutic modalities targeting Fcl ³ receptors. Journal of Allergy and Clinical Immunology, 2020, 146, 492-500.	1.5	38
59	<scp>B</scp> cells and <scp>CD</scp> 22 are dispensable for the immediate antiinflammatory activity of intravenous immunoglobulins in vivo. European Journal of Immunology, 2012, 42, 3302-3309.	1.6	37
60	How Immunoglobulin G Antibodies Kill Target Cells. Advances in Immunology, 2014, 124, 67-94.	1.1	37
61	Clarifying the Confusion between Cytokine and Fc Receptor "Common Gamma Chain― Immunity, 2016, 45, 225-226.	6.6	37
62	Highâ€resolution definition of humoral immune response correlates of effective immunity against HIV. Molecular Systems Biology, 2018, 14, e7881.	3.2	37
63	Trehalose dimycolate interferes with Fcl̂³R-mediated phagosome maturation through Mincle, SHP-1 and Fcl̂³RIIB signalling. PLoS ONE, 2017, 12, e0174973.	1.1	36
64	Select hyperactivating NLRP3 ligands enhance the T _H 1- and T _H 17-inducing potential of human type 2 conventional dendritic cells. Science Signaling, 2021, 14, .	1.6	36
65	The Pathogenicity of Anti-β2GP1-lgG Autoantibodies Depends on Fc Glycosylation. Journal of Immunology Research, 2015, 2015, 1-12.	0.9	33
66	blgG time for large eaters: monocytes and macrophages as effector and target cells of antibodyâ€mediated immune activation and repression. Immunological Reviews, 2015, 268, 52-65.	2.8	30
67	Effects of Intravenous Immunoglobulins on Mice with Experimental Epidermolysis Bullosa Acquisita. Journal of Investigative Dermatology, 2015, 135, 768-775.	0.3	30
68	Specific Inhibition of Complement Activation Significantly Ameliorates Autoimmune Blistering Disease in Mice. Frontiers in Immunology, 2018, 9, 535.	2.2	29
69	Reply to — IVIG pluripotency and the concept of Fc-sialylation: challenges to the scientist. Nature Reviews Immunology, 2014, 14, 349-349.	10.6	27
70	Sialylation of anti-histone immunoglobulin G autoantibodies determines their capabilities to participate in the clearance of late apoptotic cells. Clinical and Experimental Immunology, 2016, 184, 110-117.	1.1	26
71	Bâ€cell inhibition by crossâ€linking CD79b is superior to Bâ€cell depletion with anti D20 antibodies in treating murine collagenâ€induced arthritis. European Journal of Immunology, 2015, 45, 705-715.	1.6	23
72	Sweet SIGNs: IgG glycosylation leads the way in IVIG-mediated resolution of inflammation. International Immunology, 2017, 29, 499-509.	1.8	23

#	Article	IF	CITATIONS
73	Minimal B Cell Extrinsic IgG Glycan Modifications of Pro- and Anti-Inflammatory IgG Preparations in vivo. Frontiers in Immunology, 2019, 10, 3024.	2.2	23
74	Three blocks are not enough—Blocking of the murine lgG receptor FcγRIV is crucial for proper characterization of cells by FACS analysis. European Journal of Immunology, 2015, 45, 2694-2697.	1.6	22
75	CD137 (4-1BB) stimulation leads to metabolic and functional reprogramming of human monocytes/macrophages enhancing their tumoricidal activity. Leukemia, 2021, 35, 3482-3496.	3.3	22
76	LILR-B1 blocks activating Fcl ³ R signaling to allow antibody dependent enhancement of dengue virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2404-2405.	3.3	21
77	IL-15 enhances the anti-tumor activity of trastuzumab against breast cancer cells but causes fatal side effects in humanized tumor mice (HTM). Oncotarget, 2017, 8, 2731-2744.	0.8	21
78	Eosinophils Mediate Basophil-Dependent Allergic Skin Inflammation in Mice. Journal of Investigative Dermatology, 2019, 139, 1957-1965.e2.	0.3	19
79	The Tumor Milieu Promotes Functional Human Tumor-Resident Plasmacytoid Dendritic Cells in Humanized Mouse Models. Frontiers in Immunology, 2020, 11, 2082.	2.2	19
80	The Immunological Organ Environment Dictates the Molecular and Cellular Pathways of Cytotoxic Antibody Activity. Cell Reports, 2019, 29, 3033-3046.e4.	2.9	18
81	Immunomodulation in Primary Immune Thrombocytopenia: A Possible Role of the Fc Fragment of Romiplostim?. Frontiers in Immunology, 2019, 10, 1196.	2.2	17
82	Keeping T-he Killers at Bay via FcÎ ³ RIIb. Immunity, 2020, 52, 9-11.	6.6	16
83	In vivo enzymatic modulation of IgC antibodies prevents immune complexâ€dependent skin injury. Experimental Dermatology, 2017, 26, 691-696.	1.4	15
84	Deregulated FcÎ ³ receptor expression in patients with CIDP. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e148.	3.1	14
85	Enhanced uptake of blood coagulation factor VIII containing immune complexes by antigen presenting cells. Journal of Thrombosis and Haemostasis, 2017, 15, 329-340.	1.9	14
86	Expression and function of the inhibitory Fc <i>γ</i> â€receptor in CIDP. Journal of the Peripheral Nervous System, 2011, 16, 41-44.	1.4	13
87	IgG-Independent Co-aggregation of FcεRI and FcγRIIB Results in LYN- and SHIP1-Dependent Tyrosine Phosphorylation of FcI³RIIB in Murine Bone Marrow-Derived Mast Cells. Frontiers in Immunology, 2018, 9, 1937.	2.2	13
88	Four keys to unlock IgG. Journal of Experimental Medicine, 2021, 218, .	4.2	13
89	Translating Inhibitory Fc Receptor Biology into Novel Therapeutic Approaches. Journal of Clinical Immunology, 2016, 36, 83-87.	2.0	11
90	Next-generation antibody-based therapies in neurology. Brain, 2022, 145, 1229-1241.	3.7	11

6

#	Article	IF	CITATIONS
91	Fra1 Controls Rheumatoid Factor Autoantibody Production by Bone Marrow Plasma Cells and the Development of Autoimmune Bone Loss. Journal of Bone and Mineral Research, 2019, 34, 1352-1365.	3.1	10
92	FcÎ ³ Receptor IIB Controls Skin Inflammation in an Active Model of Epidermolysis Bullosa Acquisita. Frontiers in Immunology, 2019, 10, 3012.	2.2	9
93	Detection of Experimental and Clinical Immune Complexes by Measuring SHIP-1 Recruitment to the Inhibitory Fcl ³ RIIB. Journal of Immunology, 2018, 200, 1937-1950.	0.4	8
94	Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in lyme arthritis. ELife, 2020, 9, .	2.8	8
95	No Need for Constant Help: Human IgG2 Antibodies Have an Autonomous Agonistic Activity for Immunotherapy of Cancer. Cancer Cell, 2015, 27, 10-11.	7.7	7
96	Releasing the Brakes: Targeting Fcl ³ RIIB on B Cells to Enhance Antibody-Dependent Lymphoma Immunotherapy. Cancer Cell, 2015, 27, 427-428.	7.7	7
97	Fc-Linked IgG N-Glycosylation in FcÎ ³ R Knock-Out Mice. Frontiers in Cell and Developmental Biology, 2020, 8, 67.	1.8	7
98	The Dual Targeting of FcRn and FcγRs via Monomeric Fc Fragments Results in Strong Inhibition of IgG-Dependent Autoimmune Pathologies. Frontiers in Immunology, 2021, 12, 728322.	2.2	7
99	Fc-gamma receptors are not involved in cartilage damage during experimental osteoarthritis. Osteoarthritis and Cartilage, 2015, 23, 1221-1225.	0.6	5
100	Low-Salt Diet Attenuates B-Cell- and Myeloid-Cell-Driven Experimental Arthritides by Affecting Innate as Well as Adaptive Immune Mechanisms. Frontiers in Immunology, 2021, 12, 765741.	2.2	5
101	Low-Dose Radiotherapy Leads to a Systemic Anti-Inflammatory Shift in the Pre-Clinical K/BxN Serum Transfer Model and Reduces Osteoarthritic Pain in Patients. Frontiers in Immunology, 2021, 12, 777792.	2.2	5
102	Impact of FcÎ ³ R variants on the response to alemtuzumab in multiple sclerosis. Annals of Clinical and Translational Neurology, 2019, 6, 2586-2594.	1.7	4
103	Neuraminidase Inhibitor Zanamivir Ameliorates Collagen-Induced Arthritis. International Journal of Molecular Sciences, 2021, 22, 1428.	1.8	4
104	Unlocking the bone: Fcl ³ -receptors and antibody glycosylation are keys to connecting bone homeostasis to humoral immunity. Annals of Translational Medicine, 2015, 3, 163.	0.7	4
105	There Is Strength in Numbers: Quantitation of Fc Gamma Receptors on Murine Tissue-Resident Macrophages. International Journal of Molecular Sciences, 2021, 22, 12172.	1.8	4
106	A constant threat for HIV: Fcâ€engineering to enhance broadly neutralizing antibody activity for immunotherapy of the acquired immunodeficiency syndrome. European Journal of Immunology, 2015, 45, 2183-2190.	1.6	3
107	More Rules, Still Exceptions: Understanding Immunomodulatory Antibody Activity InÂVivo. Cancer Cell, 2018, 33, 545-546.	7.7	3

108 Editorial: Autoantibodies. Frontiers in Immunology, 2019, 10, 484.

2.2 3

#	Article	IF	CITATIONS
109	Sweet Rules: Linking Glycosylation to Antibody Function. Experientia Supplementum (2012), 2021, 112, 365-393.	0.5	3
110	A Phase II Study to Investigate the Efficacy and Safety of Eltrombopag in Combination with Dexamethasone As First-Line Treatment in Adult Patients with Newly Diagnosed Primary ITP (XPAG-ITP). Blood, 2020, 136, 36-37.	0.6	3
111	Radon Improves Clinical Response in an Animal Model of Rheumatoid Arthritis Accompanied by Increased Numbers of Peripheral Blood B Cells and Interleukin-5 Concentration. Cells, 2022, 11, 689.	1.8	3
112	HINGEneering IgG for enhanced immune activation. Science Immunology, 2022, 7, .	5.6	3
113	Two sequential layers of antibodyâ€mediated control of <i>Legionella pneumophila</i> infection. European Journal of Immunology, 2019, 49, 1415-1420.	1.6	2
114	Zooming in on dendritic cells for CD40 agonists. Nature Cancer, 2022, 3, 268-269.	5.7	2
115	Determining immunoglobulin-specific B cell receptor repertoire of murine splenocytes by next-generation sequencing. STAR Protocols, 2022, 3, 101277.	0.5	2
116	Immunomodulation with Romiplostim in Young Adult Primary Immune Thrombocytopenia (ITP) As Second-Line Strategy (iROM-study). Blood, 2021, 138, 3149-3149.	0.6	1
117	Reply to Pandey: Possible functional impact of IgG3 allotype constant region. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	1
118	12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Annals of the Rheumatic Diseases, 2012, 71, A37.2-A37.	0.5	0
119	Immunomodulation of immunothrombocytopenia. Seminars in Hematology, 2016, 53, S10-S12.	1.8	0
120	01.14â€Novel mechanism mediated by the IL23/TH17 axis contributing to auto-immune arthritis. , 2017, , .		0
121	P154â€Local low dose radiation induces systemic immune alterations in two experimental models of inflammatory arthritis. , 2019, , .		0
122	A Phase II study to investigate the efficacy and safety of eltrombopag in combination with dexamethasone as first-line treatment in adult patients with newly diagnosed primary ITP (XPAG-ITP). Hamostaseologie, 2021, 41, .	0.9	0
123	The Novel Bispecific Antibody [(CD20)2xCD16] Efficiently Triggers Lysis of Neoplastic B Cells. Blood, 2010, 116, 2846-2846.	0.6	0
124	Bâ€cell modulation with antiâ€CD79b antibodies ameliorates experimental autoimmune encephalitis in mice. European Journal of Immunology, 2022, 52, 656-668.	1.6	0