List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4989719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using eDNA presence/nonâ€detection data to characterize the abiotic and biotic habitat requirements of a rare, elusive amphibian. Environmental DNA, 2022, 4, 642-653.	3.1	2
2	Emphasizing declining populations in the Living Planet Report. Nature, 2022, 601, E20-E24.	13.7	22
3	Societal extinction of species. Trends in Ecology and Evolution, 2022, 37, 411-419.	4.2	26
4	A global reptile assessment highlights shared conservation needs of tetrapods. Nature, 2022, 605, 285-290.	13.7	130
5	Automated assessment reveals that the extinction risk of reptiles is widely underestimated across space and phylogeny. PLoS Biology, 2022, 20, e3001544.	2.6	32
6	The plight of the Endangered mountain gazelle <i>Gazella gazella</i> . Oryx, 2021, 55, 771-778.	0.5	5
7	A global horizon scan of the future impacts of robotics and autonomous systems on urban ecosystems. Nature Ecology and Evolution, 2021, 5, 219-230.	3.4	39
8	iNaturalist insights illuminate COVID-19 effects on large mammals in urban centers. Biological Conservation, 2021, 254, 108953.	1.9	43
9	Different solutions lead to similar life history traits across the great divides of the amniote tree of life. Journal of Biological Research, 2021, 28, 3.	2.2	10
10	Introduction. Conservation Biology, 2021, 35, 395-397.	2.4	9
11	Using Wikipedia to measure public interest in biodiversity and conservation. Conservation Biology, 2021, 35, 412-423.	2.4	25
12	Combining culturomic sources to uncover trends in popularity and seasonal interest in plants. Conservation Biology, 2021, 35, 460-471.	2.4	13
13	Invasion Culturomics and iEcology. Conservation Biology, 2021, 35, 447-451.	2.4	24
14	Birds that are more commonly encountered in the wild attract higher public interest online. Conservation Science and Practice, 2021, 3, e340.	0.9	6
15	Digital data sources and methods for conservation culturomics. Conservation Biology, 2021, 35, 398-411.	2.4	68
16	Conservation status of the world's skinks (Scincidae): Taxonomic and geographic patterns in extinction risk. Biological Conservation, 2021, 257, 109101.	1.9	26
17	Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biological Conservation, 2021, 263, 109175.	1.9	96
18	COVIDâ€19 lockdowns increase public interest in urban nature. Frontiers in Ecology and the Environment, 2021, 19, 320-322.	1.9	19

#	Article	IF	CITATIONS
19	Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology and Evolution, 2021, 5, 1499-1509.	3.4	147
20	Global determinants and conservation of evolutionary and geographic rarity in land vertebrates. Science Advances, 2021, 7, eabe5582.	4.7	38
21	Global priorities for conservation of reptilian phylogenetic diversity in the face of human impacts. Nature Communications, 2020, 11, 2616.	5.8	59
22	The global diversity and distribution of lizard clutch sizes. Global Ecology and Biogeography, 2020, 29, 1515-1530.	2.7	49
23	Macroevolutionary convergence connects morphological form to ecological function in birds. Nature Ecology and Evolution, 2020, 4, 230-239.	3.4	285
24	iEcology: Harnessing Large Online Resources to Generate Ecological Insights. Trends in Ecology and Evolution, 2020, 35, 630-639.	4.2	129
25	Expanding conservation culturomics and iEcology from terrestrial to aquatic realms. PLoS Biology, 2020, 18, e3000935.	2.6	41
26	Global patterns of body size evolution in squamate reptiles are not driven by climate. Global Ecology and Biogeography, 2019, 28, 471-483.	2.7	44
27	Inferring public interest from search engine data requires caution. Frontiers in Ecology and the Environment, 2019, 17, 254-255.	1.9	27
28	A season for all things: Phenological imprints in Wikipedia usage and their relevance to conservation. PLoS Biology, 2019, 17, e3000146.	2.6	38
29	The association between patient–therapist MATRIX congruence and treatment outcome. Psychotherapy Research, 2019, 29, 935-946.	1.1	1
30	National conservation science conferences as a means of bridging conservation science and practice. Conservation Biology, 2018, 32, 1200-1202.	2.4	0
31	Using machine learning to disentangle homonyms in large text corpora. Conservation Biology, 2018, 32, 716-724.	2.4	33
32	Extinct, obscure or imaginary: The lizard species with the smallest ranges. Diversity and Distributions, 2018, 24, 262-273.	1.9	66
33	Gritty until proven irritant—What makes a species invasive? Comment on Cassinello (2018). Conservation Letters, 2018, 11, e12597.	2.8	0
34	The contextual separation of lateral white line patterns in chameleons. Royal Society Open Science, 2018, 5, 171235.	1.1	1
35	The global distribution of tetrapods reveals a need for targeted reptile conservation. Nature Ecology and Evolution, 2017, 1, 1677-1682.	3.4	378
36	The Eurasian hot nightlife: Environmental forces associated with nocturnality in lizards. Global Ecology and Biogeography, 2017, 26, 1316-1325.	2.7	22

#	Article	IF	CITATIONS
37	Living quarters of a living fossil—Uncovering the current distribution pattern of the rediscovered Hula painted frog (<i>Latonia nigriventer</i>) using environmental <scp>DNA</scp> . Molecular Ecology, 2017, 26, 6801-6812.	2.0	17
38	Using Wikipedia page views to explore the cultural importance of global reptiles. Biological Conservation, 2016, 204, 42-50.	1.9	62
39	Patterns of species richness, endemism and environmental gradients of African reptiles. Journal of Biogeography, 2016, 43, 2380-2390.	1.4	42
40	Possible linkage between neuronal recruitment and flight distance in migratory birds. Scientific Reports, 2016, 6, 21983.	1.6	23
41	Linking vertebrate species richness to tree canopy height on a global scale. Global Ecology and Biogeography, 2015, 24, 814-825.	2.7	34
42	Late bloomers and baby boomers: ecological drivers of longevity in squamates and the tuatara. Global Ecology and Biogeography, 2015, 24, 396-405.	2.7	78
43	A test for a shift in the boundary of the geographical range of a species. Biology Letters, 2014, 10, 20130808.	1.0	3
44	Natural history, physiology and energetic strategies of Asellia tridens (Chiroptera). Mammalian Biology, 2013, 78, 94-103.	0.8	18
45	Species–area relationships always overestimate extinction rates from habitat loss: comment. Ecology, 2013, 94, 761-763.	1.5	18
46	Bats of a Gender Flock Together: Sexual Segregation in a Subtropical Bat. PLoS ONE, 2013, 8, e54987.	1.1	33
47	Rueppel's Snake-eyed Skink, Ablepharus rueppellii (Gray, 1839) (Reptilia: Squamata: Scincidae): distribution extension and geographic range in Israel. Check List, 2013, 9, 458.	0.1	1
48	Modeling and Statistical Analysis of the Spatio-Temporal Patterns of Seasonal Influenza in Israel. PLoS ONE, 2012, 7, e45107.	1.1	27
49	Modelling the initial phase of an epidemic using incidence and infection network data: 2009 H1N1 pandemic in Israel as a case study. Journal of the Royal Society Interface, 2011, 8, 856-867.	1.5	28
50	Onset of a pandemic: characterizing the initial phase of the swine flu (H1N1) epidemic in Israel. BMC Infectious Diseases, 2011, 11, 92.	1.3	19
51	Not so Holy After All. Israel Journal of Ecology and Evolution, 2011, 57, 193-204.	0.2	3
52	The change in genetic diversity down the coreâ€edge gradient in the eastern spadefoot toad (<i>Pelobates syriacus</i>). Molecular Ecology, 2010, 19, 2675-2689.	2.0	49
53	Costâ€efficiency of biodiversity indicators for Mediterranean ecosystems and the effects of socioâ€economic factors. Journal of Applied Ecology, 2010, 47, 1179-1188.	1.9	51
54	Diversity patterns of wild bees in almond orchards and their surrounding landscape. Israel Journal of Plant Sciences, 2009, 57, 185-191.	0.3	17

#	Article	IF	CITATIONS
55	Hot-Spot Facts and Artifacts-Questioning Israel's Great Biodiversity. Israel Journal of Ecology and Evolution, 2009, 55, 263-279.	0.2	12
56	Non-indigenous land and freshwater gastropods in Israel. Biological Invasions, 2009, 11, 1963-1972.	1.2	44
57	Non-indigenous terrestrial vertebrates in Israel and adjacent areas. Biological Invasions, 2008, 10, 659-672.	1.2	23
58	Non-indigenous insect species in Israel and adjacent areas. Biological Invasions, 2007, 9, 629-643.	1.2	18
59	Characteristics of the introduced fish fauna of Israel. Biological Invasions, 2007, 9, 813-824.	1.2	33
60	On the role of phylogeny in determining activity patterns of rodents. Evolutionary Ecology, 2006, 20, 479-490.	0.5	108