Chunxiang Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4989304/publications.pdf Version: 2024-02-01

CHUNYIANC YE

#	Article	IF	CITATIONS
1	Rapid cycling of reactive nitrogen in the marine boundary layer. Nature, 2016, 532, 489-491.	13.7	159
2	Photolysis of Particulate Nitrate as a Source of HONO and NO _{<i>x</i>} . Environmental Science & amp; Technology, 2017, 51, 6849-6856.	4.6	145
3	Photolysis of Nitric Acid and Nitrate on Natural and Artificial Surfaces. Environmental Science & Technology, 2016, 50, 3530-3536.	4.6	102
4	Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO _{<i>x</i>} in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 2125-2147.	1.9	64
5	Elevated levels of OH observed in haze events during wintertime in central Beijing. Atmospheric Chemistry and Physics, 2020, 20, 14847-14871.	1.9	62
6	High-resolution vertical distribution and sources of HONO and NO ₂ in the nocturnal boundary layer in urban Beijing, China. Atmospheric Chemistry and Physics, 2020, 20, 5071-5092.	1.9	40
7	Relative humidity and O ₃ concentration as two prerequisites for sulfate formation. Atmospheric Chemistry and Physics, 2019, 19, 12295-12307.	1.9	39
8	Observation of regional air pollutant transport between the megacity Beijing and the North China Plain. Atmospheric Chemistry and Physics, 2016, 16, 14265-14283.	1.9	34
9	Chemistryâ€ŧurbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere. Geophysical Research Letters, 2015, 42, 10,894.	1.5	30
10	Comprehensive Study about the Photolysis of Nitrates on Mineral Oxides. Environmental Science & Technology, 2021, 55, 8604-8612.	4.6	25
11	The Key Role of Sulfate in the Photochemical Renoxification on Real PM _{2.5} . Environmental Science & Technology, 2020, 54, 3121-3128.	4.6	24
12	Low-NO atmospheric oxidation pathways in a polluted megacity. Atmospheric Chemistry and Physics, 2021, 21, 1613-1625.	1.9	24
13	Evaluation of Novel Routes for NO _{<i>x</i>} Formation in Remote Regions. Environmental Science & Technology, 2017, 51, 7442-7449.	4.6	23
14	Distribution and sources of air pollutants in the North China Plain based on on-road mobile measurements. Atmospheric Chemistry and Physics, 2016, 16, 12551-12565.	1.9	22
15	Tropospheric HONO distribution and chemistry in the southeastern US. Atmospheric Chemistry and Physics, 2018, 18, 9107-9120.	1.9	22
16	Comment on "Missing gas-phase source of HONO inferred from Zeppelin measurements in the troposphere― Science, 2015, 348, 1326-1326.	6.0	19
17	Matrix effect on surface-catalyzed photolysis of nitric acid. Scientific Reports, 2019, 9, 4351.	1.6	18
18	Implementation of a chemical background method for atmospheric OH measurements by laser-induced fluorescence: characterisation and observations from the UK and China. Atmospheric Measurement Techniques, 2020, 13, 3119-3146.	1.2	18

CHUNXIANG YE

#	Article	IF	CITATIONS
19	Heterogeneous reaction of NO2 on the surface of montmorillonite particles. Journal of Environmental Sciences, 2012, 24, 1753-1758.	3.2	15
20	Heterogeneous reaction of NO2 with sea salt particles. Science China Chemistry, 2010, 53, 2652-2656.	4.2	13
21	An investigation into the chemistry of HONO in the marine boundary layer at Tudor Hill Marine Atmospheric Observatory in Bermuda. Atmospheric Chemistry and Physics, 2022, 22, 6327-6346.	1.9	12
22	Synergistic effect of nitrate-doped TiO2 aerosols on the fast photochemical oxidation of formaldehyde. Scientific Reports, 2017, 7, 1161.	1.6	11
23	Insights into air pollution chemistry and sulphate formation from nitrous acid (HONO) measurements during haze events in Beijing. Faraday Discussions, 2021, 226, 223-238.	1.6	9
24	Using wavelet transform to analyse on-road mobile measurements of air pollutants: a case study to evaluate vehicle emission control policies during the 2014 APEC summit. Atmospheric Chemistry and Physics, 2019, 19, 13841-13857.	1.9	8
25	Observations of speciated isoprene nitrates in Beijing: implications for isoprene chemistry. Atmospheric Chemistry and Physics, 2021, 21, 6315-6330.	1.9	4
26	Amplitude-Modulated Cavity-Enhanced Absorption Spectroscopy with Phase-Sensitive Detection: A New Approach Applied to the Fast and Sensitive Detection of NO2. Analytical Chemistry, 2022, , .	3.2	4
27	Atmospheric Heterogeneous and Multiphase Chemistry and Its Implications for Air Pollution in China. , 2019, , 83-167.		1