Peter C Searson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4989215/publications.pdf

Version: 2024-02-01

235 papers 19,237 citations

69 h-index 130 g-index

246 all docs

246 docs citations

times ranked

246

23428 citing authors

#	Article	IF	CITATIONS
1	Precision Rehabilitation: Optimizing Function, Adding Value to Health Care. Archives of Physical Medicine and Rehabilitation, 2022, 103, 1233-1239.	0.9	31
2	IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function. JCI Insight, 2022, 7, .	5.0	23
3	Human IPSC 3D brain model as a tool to study chemical-induced dopaminergic neuronal toxicity. Neurobiology of Disease, 2022, 169, 105719.	4.4	12
4	Atomistic Model of Solute Transport across the Blood–Brain Barrier. ACS Omega, 2022, 7, 1100-1112.	3.5	7
5	Hypoxiaâ€induced bloodâ€brain barrier dysfunction is prevented by pericyteâ€conditioned media via attenuated actomyosin contractility and claudinâ€5 stabilization. FASEB Journal, 2022, 36, e22331.	0.5	5
6	Effects of acute and chronic oxidative stress on the blood–brain barrier in 2D and 3D in vitro models. Fluids and Barriers of the CNS, 2022, 19, 33.	5.0	10
7	Engineering the Human Blood–Brain Barrier at the Capillary Scale using a Doubleâ€Templating Technique. Advanced Functional Materials, 2022, 32, .	14.9	13
8	Brain microvascular endothelial cell dysfunction in an isogenic juvenile iPSC model of Huntington's disease. Fluids and Barriers of the CNS, 2022, 19, .	5.0	8
9	Reversible blood-brain barrier opening utilizing the membrane active peptide melittin in vitro and in vivo. Biomaterials, 2021, 275, 120942.	11.4	24
10	Next-generation in vitro blood–brain barrier models: benchmarking and improving model accuracy. Fluids and Barriers of the CNS, 2021, 18, 56.	5.0	17
11	Modeling hyperosmotic blood–brain barrier opening within human tissue-engineered in vitro brain microvessels. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1517-1532.	4.3	43
12	Optimization of osmotic blood-brain barrier opening to enable intravital microscopy studies on drug delivery in mouse cortex. Journal of Controlled Release, 2020, 317, 312-321.	9.9	35
13	A Tissue-Engineered 3D Microvessel Model Reveals the Dynamics of Mosaic Vessel Formation in Breast Cancer. Cancer Research, 2020, 80, 4288-4301.	0.9	69
14	Three-dimensional induced pluripotent stem-cell models of human brain angiogenesis. Microvascular Research, 2020, 132, 104042.	2.5	18
15	A Capacitive Sweat Rate Sensor for Continuous and Real-Time Monitoring of Sweat Loss. ACS Sensors, 2020, 5, 3821-3826.	7.8	32
16	Long-Term Cryopreservation Preserves Blood–Brain Barrier Phenotype of iPSC-Derived Brain Microvascular Endothelial Cells and Three-Dimensional Microvessels. Molecular Pharmaceutics, 2020, 17, 3425-3434.	4.6	14
17	Assessment of Patient Ambulation Profiles to Predict Hospital Readmission, Discharge Location, and Length of Stay in a Cardiac Surgery Progressive Care Unit. JAMA Network Open, 2020, 3, e201074.	5.9	12
18	The Dynamic Response of Sweat Chloride to Changes in Exercise Load Measured by a Wearable Sweat Sensor. Scientific Reports, 2020, 10, 7699.	3.3	16

#	Article	IF	CITATIONS
19	A peptide for transcellular cargo delivery: Structure-function relationship and mechanism of action. Journal of Controlled Release, 2020, 324, 633-643.	9.9	14
20	Out-of-clinic measurement of sweat chloride using a wearable sensor during low-intensity exercise. Npj Digital Medicine, 2020, 3, 49.	10.9	17
21	The role of mutations associated with familial neurodegenerative disorders on blood–brain barrier function in an iPSC model. Fluids and Barriers of the CNS, 2019, 16, 20.	5.0	51
22	Tissue-engineered blood-brain barrier models via directed differentiation of human induced pluripotent stem cells. Scientific Reports, 2019, 9, 13957.	3.3	67
23	Cerebrovascular plasticity: Processes that lead to changes in the architecture of brain microvessels. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1413-1432.	4.3	42
24	Role of iPSC-derived pericytes on barrier function of iPSC-derived brain microvascular endothelial cells in 2D and 3D. Fluids and Barriers of the CNS, 2019, 16, 15.	5.0	82
25	An experimentally validated approach to calculate the blood-brain barrier permeability of small molecules. Scientific Reports, 2019, 9, 6117.	3.3	39
26	Engineered nanoparticles for systemic siRNA delivery to malignant brain tumours. Nanoscale, 2019, 11, 20045-20057.	5.6	44
27	Two Distinct Types of Sweat Profile in Healthy Subjects While Exercising at Constant Power Output Measured by a Wearable Sweat Sensor. Scientific Reports, 2019, 9, 17877.	3.3	9
28	Chemotherapeutic Drug Delivery and Quantitative Analysis of Proliferation, Apoptosis, and Migration in a Tissue-Engineered Three-Dimensional Microvessel Model of the Tumor Microenvironment. ACS Biomaterials Science and Engineering, 2019, 5, 633-643.	5.2	11
29	Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials, 2019, 190-191, 24-37.	11.4	141
30	Wearable Devices for Precision Medicine and Health State Monitoring. IEEE Transactions on Biomedical Engineering, 2019, 66, 1242-1258.	4.2	102
31	Dissemination from a Solid Tumor: Examining the Multiple Parallel Pathways. Trends in Cancer, 2018, 4, 20-37.	7.4	35
32	Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation. Fluids and Barriers of the CNS, 2018, 15, 7.	5.0	83
33	Electronic Cortisol Detection Using an Antibody-Embedded Polymer Coupled to a Field-Effect Transistor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 16233-16237.	8.0	62
34	Sweat test for cystic fibrosis: Wearable sweat sensor vs. standard laboratory test. Journal of Cystic Fibrosis, 2018, 17, e35-e38.	0.7	57
35	Leakage kinetics of the liposomal chemotherapeutic agent Doxil: The role of dissolution, protonation, and passive transport, and implications for mechanism of action. Journal of Controlled Release, 2018, 269, 171-176.	9.9	59
36	Predicting drug delivery efficiency into tumor tissues through molecular simulation of transport in complex vascular networks. Journal of Controlled Release, 2018, 292, 221-234.	9.9	15

#	Article	IF	CITATIONS
37	Benchmarking in vitro tissue-engineered blood–brain barrier models. Fluids and Barriers of the CNS, 2018, 15, 32.	5.0	105
38	Influence of Bioreceptor Layer Structure on Myelin Basic Protein Detection using Organic Field Effect Transistorâ€Based Biosensors. Advanced Functional Materials, 2018, 28, 1802605.	14.9	25
39	Quantitative Evaluation of the Enhanced Permeability and Retention (EPR) Effect. Methods in Molecular Biology, 2017, 1530, 247-254.	0.9	9
40	Using a Real-Time Location System for Assessment of Patient Ambulation in a Hospital Setting. Archives of Physical Medicine and Rehabilitation, 2017, 98, 1366-1373.e1.	0.9	18
41	Tumor accumulation of liposomal doxorubicin in three murine models: Optimizing delivery efficiency. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1637-1644.	3.3	29
42	Tissueâ€engineered 3D microvessel and capillary network models for the study of vascular phenomena. Microcirculation, 2017, 24, e12360.	1.8	35
43	A wearable potentiometric sensor with integrated salt bridge for sweat chloride measurement. Sensors and Actuators B: Chemical, 2017, 250, 673-678.	7.8	60
44	High throughput differential identification of TMPRSS2-ERG fusion genes in prostate cancer patient urine. Biomaterials, 2017, 135, 23-29.	11.4	11
45	Zebrafish models for functional and toxicological screening of nanoscale drug delivery systems: promoting preclinical applications. Bioscience Reports, 2017, 37, .	2.4	43
46	Ebola Virus Delta Peptide Is a Viroporin. Journal of Virology, 2017, 91, .	3.4	26
47	Electrophoresis of cell membrane heparan sulfate regulates galvanotaxis in glial cells. Journal of Cell Science, 2017, 130, 2459-2467.	2.0	16
48	Integrated Magnetic Bead–Quantum Dot Immunoassay for Malaria Detection. ACS Sensors, 2017, 2, 766-772.	7.8	33
49	Utility of microfluidic devices to study the platelet–endothelium interface. Platelets, 2017, 28, 449-456.	2.3	10
50	Real-time quantification of endothelial response to shear stress and vascular modulators. Integrative Biology (United Kingdom), 2017, 9, 362-374.	1.3	29
51	Mitosis-Mediated Intravasation in a Tissue-Engineered Tumor–Microvessel Platform. Cancer Research, 2017, 77, 6453-6461.	0.9	24
52	Detection of <i>Plasmodium</i> Lactate Dehydrogenase Antigen in Buffer Using Aptamer-Modified Magnetic Microparticles for Capture, Oligonucleotide-Modified Quantum Dots for Detection, and Oligonucleotide-Modified Gold Nanoparticles for Signal Amplification. Bioconjugate Chemistry, 2017, 28, 2230-2234.	3.6	25
53	NIH workshop report on the trans-agency blood–brain interface workshop 2016: exploring key challenges and opportunities associated with the blood, brain and their interface. Fluids and Barriers of the CNS, 2017, 14, 12.	5.0	16
54	Engineering the human blood-brain barrier in vitro. Journal of Biological Engineering, 2017, 11, 37.	4.7	56

#	Article	IF	CITATIONS
55	Optical coding of fusion genes using multicolor quantum dots for prostate cancer diagnosis. International Journal of Nanomedicine, 2017, Volume 12, 4397-4407.	6.7	11
56	Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs). Fluids and Barriers of the CNS, 2017, 14, 20.	5.0	120
57	In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Frontiers in Bioengineering and Biotechnology, 2016, 4, 12.	4.1	531
58	Electrochemical activation of engineered protein switches. Biotechnology and Bioengineering, 2016, 113, 453-456.	3.3	7
59	Cellular microenvironment modulates the galvanotaxis of brain tumor initiating cells. Scientific Reports, 2016, 6, 21583.	3.3	36
60	Nanoparticle-Based Histidine-Rich Protein-2 Assay for the Detection of the Malaria Parasite Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene, 2016, 95, 354-357.	1.4	13
61	Development and Application of a Novel Model System to Study "Active―and "Passive―Tumor Targeting. Molecular Cancer Therapeutics, 2016, 15, 2541-2550.	4.1	9
62	Real-time imaging and quantitative analysis of doxorubicin transport in a perfusable microvessel platform. Integrative Biology (United Kingdom), 2016, 8, 976-984.	1.3	19
63	"Small Blood Vessels: Big Health Problems?― Scientific Recommendations of the National Institutes of Health Workshop. Journal of the American Heart Association, 2016, 5, .	3.7	67
64	Wearable Potentiometric Chloride Sweat Sensor: The Critical Role of the Salt Bridge. Analytical Chemistry, 2016, 88, 12241-12247.	6.5	68
65	On Chip Bioelectric Impedance Spectroscopy Reveals the Effect of P-Glycoprotein Efflux Pumps on the Paracellular Impedance of Tight Junctions at the Blood–Brain Barrier. IEEE Transactions on Nanobioscience, 2016, 15, 697-703.	3.3	7
66	In vitro characterization of pralidoxime transport and acetylcholinesterase reactivation across MDCK cells and stem cell-derived human brain microvascular endothelial cells (BC1-hBMECs). Fluids and Barriers of the CNS, 2016, 13, 10.	5.0	19
67	The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumor Biology, 2016, 37, 61-69.	1.8	97
68	Human Brain Microvascular Endothelial Cells Derived from the BC1 iPS Cell Line Exhibit a Blood-Brain Barrier Phenotype. PLoS ONE, 2016, 11, e0152105.	2.5	110
69	Diagnosis of prostate cancer via nanotechnological approach. International Journal of Nanomedicine, 2015, 10, 6555.	6.7	20
70	Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix. Biomaterials, 2015, 42, 134-143.	11.4	129
71	Mathematical models of the steps involved in the systemic delivery of a chemotherapeutic to a solid tumor: From circulation to survival. Journal of Controlled Release, 2015, 212, 78-84.	9.9	13
72	Human brain microvascular endothelial cells resist elongation due to shear stress. Microvascular Research, 2015, 99, 8-18.	2.5	84

#	Article	IF	Citations
73	Magnetic bead-quantum dot assay for detection of a biomarker for traumatic brain injury. Nanoscale, 2015, 7, 17820-17826.	5.6	37
74	Recommendations for Benchmarking Preclinical Studies of Nanomedicines. Cancer Research, 2015, 75, 4016-4020.	0.9	23
75	Review: in vitro microvessel models. Lab on A Chip, 2015, 15, 4242-4255.	6.0	121
76	Quantitative Analysis of the Enhanced Permeation and Retention (EPR) Effect. PLoS ONE, 2015, 10, e0123461.	2.5	88
77	Influence of Basement Membrane Proteins and Endothelial Cell-Derived Factors on the Morphology of Human Fetal-Derived Astrocytes in 2D. PLoS ONE, 2014, 9, e92165.	2.5	27
78	Highly Efficient Macromolecule-Sized Poration of Lipid Bilayers by a Synthetically Evolved Peptide. Journal of the American Chemical Society, 2014, 136, 4724-4731.	13.7	59
79	Protein imprinting in polyacrylamide-based gels. Biomaterials, 2014, 35, 8659-8668.	11.4	31
80	Live-Cell Imaging of Invasion and Intravasation in an Artificial Microvessel Platform. Cancer Research, 2014, 74, 4937-4945.	0.9	109
81	Universal Antibody Conjugation to Nanoparticles Using the Fcl³ Receptor I (Fcl³RI): Quantitative Profiling Of Membrane Biomarkers. Bioconjugate Chemistry, 2014, 25, 1893-1901.	3.6	38
82	State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines. Journal of Controlled Release, 2014, 187, 133-144.	9.9	434
83	Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments. Frontiers in Chemistry, 2014, 2, 69.	3.6	116
84	Brain microvascular endothelial cells resist elongation due to curvature and shear stress. Scientific Reports, 2014, 4, 4681.	3.3	106
85	Effect of modifying quantum dot surface charge on airway epithelial cell uptake <i>in vitro</i> . Nanotoxicology, 2013, 7, 1143-1151.	3.0	13
86	Automatic cell segmentation in fluorescence images of confluent cell monolayers using multi-object geometric deformable model., 2013, 8669, .		6
87	The electrical response of bilayers to the bee venom toxin melittin: Evidence for transient bilayer permeabilization. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1357-1364.	2.6	50
88	A Membrane-Translocating Peptide Penetrates into Bilayers without Significant Bilayer Perturbations. Biophysical Journal, 2013, 104, 2419-2428.	0.5	42
89	The blood-brain barrier: an engineering perspective. Frontiers in Neuroengineering, 2013, 6, 7.	4.8	458
90	The Influence of Electric Field and Confinement on Cell Motility. PLoS ONE, 2013, 8, e59447.	2.5	35

#	Article	IF	CITATIONS
91	Interactions of Membrane Active Peptides with Planar Supported Bilayers: An Impedance Spectroscopy Study. Langmuir, 2012, 28, 6088-6096.	3.5	24
92	Quantitative characterization of the lipid encapsulation of quantum dots for biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1190-1199.	3.3	24
93	Quantitative molecular profiling of biomarkers for pancreatic cancer with functionalized quantum dots. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1043-1051.	3.3	37
94	Surface-tethered protein switches. Chemical Communications, 2011, 47, 3398.	4.1	6
95	Blinking in quantum dots: The origin of the grey state and power law statistics. Physical Review B, 2011, 84, 125317.	3.2	26
96	Island growth in electrodeposition. Journal Physics D: Applied Physics, 2011, 44, 443001.	2.8	133
97	Molecular Imprinting of Maltose Binding Protein: Tuning Protein Recognition at the Molecular Level. Macromolecules, 2011, 44, 3966-3972.	4.8	51
98	The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nature Reviews Cancer, 2011, 11, 512-522.	28.4	1,038
99	CulnSe/ZnS Core/Shell NIR Quantum Dots for Biomedical Imaging. Small, 2011, 7, 3148-3152.	10.0	97
100	Imaging: CulnSe/ZnS Core/Shell NIR Quantum Dots for Biomedical Imaging (Small 22/2011). Small, 2011, 7, 3106-3106.	10.0	1
101	Electrodeposition of Nanometer-Sized Ferric Oxide Materials in Colloidal Templates for Conversion of Light to Chemical Energy. Journal of Nanomaterials, 2011, 2011, 1-8.	2.7	7
102	Electrically Addressable, Biologically Relevant Surface-Supported Bilayers. Langmuir, 2010, 26, 12054-12059.	3 . 5	18
103	Evolution of surface width in electrochemical nucleation and growth. Electrochemistry Communications, 2010, 12, 431-434.	4.7	8
104	On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochimica Acta, 2010, 55, 4086-4091.	5. 2	131
105	The kinetics of copper island growth on ruthenium oxide in perchlorate solution. Electrochimica Acta, 2010, 55, 8416-8421.	5. 2	11
106	Triggering cell detachment from patterned electrode arrays by programmed subcellular release. Nature Protocols, 2010, 5, 1273-1280.	12.0	17
107	Tunnel barrier photoelectrodes for solar water splitting. Applied Physics Letters, 2010, 97, 063111.	3.3	15
108	Batteries and charge storage devices based on electronically conducting polymers. Journal of Materials Research, 2010, 25, 1561-1574.	2.6	107

#	Article	IF	Citations
109	Interplay of RhoA and Motility in the Programmed Spreading of Daughter Cells Postmitosis. Biophysical Journal, 2010, 99, 3526-3534.	0.5	15
110	Effect of a Polymer Cushion on the Electrical Properties and Stability of Surface-Supported Lipid Bilayers. Langmuir, 2010, 26, 3544-3548.	3.5	32
111	Electrochemical Release of Fluorescently Labeled Thiols from Patterned Gold Surfaces. Langmuir, 2010, 26, 1420-1423.	3.5	17
112	The temperature dependence of the impedance of alkanethiol self-assembled monolayers. Applied Physics Letters, 2010, 97, 043110.	3.3	9
113	Influence of anion on the kinetics of copper island growth. Nanoscale, 2010, 2, 2431.	5.6	5
114	A perinuclear actin cap regulates nuclear shape. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19017-19022.	7.1	511
115	Programmed subcellular release for studying the dynamics of cell detachment. Nature Methods, 2009, 6, 211-213.	19.0	43
116	Magnetic Tweezers Measurement of Single Molecule Torque. Nano Letters, 2009, 9, 1720-1725.	9.1	101
117	Growth kinetics of disk-shaped copper islands in electrochemical deposition. Physical Review E, 2009, 79, 051601.	2.1	10
118	Utility of surface-supported bilayers in studies of transmembrane helix dimerization. Journal of Structural Biology, 2009, 168, 53-60.	2.8	17
119	Oriented assembly of anisotropic particles by capillary interactions. Soft Matter, 2009, 5, 886-890.	2.7	75
120	Exploiting Nucleation and Growth in the Synthesis and Electrical Passivation of CdSe Quantum Dots. Science of Advanced Materials, 2009, 1, 93-100.	0.7	9
121	FIB/TEM Characterization of the Composition and Structure of Core/Shell Cuâ^'Ni Nanowires. Nano Letters, 2008, 8, 2166-2170.	9.1	52
122	Anisotropic Island Growth: A New Approach to Thin Film Electrocrystallization. Langmuir, 2008, 24, 10557-10559.	3.5	19
123	Impedance spectroscopy of bilayer membranes on single crystal silicon. Biointerphases, 2008, 3, FA33-FA40.	1.6	24
124	Characterization of antimicrobial peptide activity by electrochemical impedance spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2430-2436.	2.6	46
125	Formation of a Core/Shell Microstructure in Cu–Ni Thin Films. Journal of the Electrochemical Society, 2008, 155, D569.	2.9	20
126	Exploiting finite size effects in a novel core/shell microstructure. Journal of Applied Physics, 2008, 103, 064313.	2.5	32

#	Article	IF	CITATIONS
127	Synthesis of Cadmium Selenide Quantum Dots from a Non-Coordinating Solvent: Growth Kinetics and Particle Size Distribution. Journal of Physical Chemistry C, 2008, 112, 17849-17854.	3.1	39
128	Rotation and Alignment of Anisotropic Particles on Nonplanar Interfaces. Langmuir, 2008, 24, 9302-9307.	3.5	67
129	Simulations of Island Growth and Island Spatial Distribution during Electrodeposition. Electrochemical and Solid-State Letters, 2007, 10, D76.	2.2	13
130	Fabrication and Magnetic Properties of Ordered Macroporous Nickel Structures. Journal of the Electrochemical Society, 2007, 154, D65.	2.9	31
131	Finite Size Effects in Ordered Macroporous Electrodes Fabricated by Electrodeposition into Colloidal Crystal Templates. Journal of Physical Chemistry C, 2007, 111, 3308-3313.	3.1	27
132	Electrical Measurements of Bilayer Membranes Formed by Langmuirâ Blodgett Deposition on Single-Crystal Silicon. Langmuir, 2007, 23, 13040-13045.	3.5	28
133	Octadecanethiol SAMs as Molecular Resists for Electrodeposition of Cobalt. Journal of Physical Chemistry C, 2007, 111, 8686-8691.	3.1	13
134	Influence of Applied Potential on the Impedance of Alkanethiol SAMs. Langmuir, 2007, 23, 9681-9685.	3.5	38
135	Focal Adhesion Disassembly Using Electrochemically Programmed Sub-Cellular Release. ECS Meeting Abstracts, 2007, , .	0.0	0
136	Quantifying Electrochemical Nucleation and Growth of Nanoscale Clusters Using Real-Time Kinetic Data. Nano Letters, 2006, 6, 238-242.	9.1	248
137	Electrochemical Template Synthesis of Multisegment Nanowires:  Fabrication and Protein Functionalization. Langmuir, 2006, 22, 10528-10534.	3.5	44
138	Electrochemical Characterization of Adsorption-Desorption of the Cuprous-Suppressor-Chloride Complex during Electrodeposition of Copper. Journal of the Electrochemical Society, 2006, 153, C258.	2.9	56
139	Stochastic Simulation of the Early Stages of Kinetically Limited Electrodeposition. Journal of the Electrochemical Society, 2006, 153, C434.	2.9	40
140	Electrochemical Characterization of Charge Injection at Electrodeposited Platinum Electrodes in Phosphate Buffered Saline. Journal of the Electrochemical Society, 2006, 153, C834.	2.9	19
141	Potential Modulated Multilayer Deposition of Multisegment Cu/Ni Nanowires with Tunable Magnetic Properties. Chemistry of Materials, 2006, 18, 1595-1601.	6.7	69
142	Kinetics of Receptor Directed Assembly of Multisegment Nanowires. Journal of Physical Chemistry B, 2006, 110, 211-217.	2.6	23
143	Fabrication of Complex Architectures Using Electrodeposition into Patterned Self-Assembled Monolayers. Nano Letters, 2006, 6, 1023-1026.	9.1	40
144	Single Nanoporous Gold Nanowire Sensors. Journal of Physical Chemistry B, 2006, 110, 4318-4322.	2.6	237

#	Article	IF	Citations
145	Kinetics of Desorption of Alkanethiolates on Gold. Langmuir, 2006, 22, 3474-3476.	3 . 5	38
146	Bias-Dependent Admittance in Hybrid Bilayer Membranes. Langmuir, 2006, 22, 7156-7158.	3.5	8
147	Electrochemically Programmed Release of Biomolecules and Nanoparticles. Nano Letters, 2006, 6, 1250-1253.	9.1	44
148	In Situ Study of the Growth Kinetics of Individual Island Electrodeposition of Copper. Journal of Physical Chemistry B, 2006, 110, 7862-7868.	2.6	147
149	Orientation of a Nanocylinder at a Fluid Interface. Journal of Physical Chemistry B, 2006, 110, 4283-4290.	2.6	52
150	The morphology and nucleation kinetics of copper islands during electrodeposition. Surface Science, 2006, 600, 1817-1826.	1.9	116
151	Electrodeposition of Copper on Oxidized Ruthenium. Journal of the Electrochemical Society, 2006, 153, C840.	2.9	37
152	Influence of the reactant concentrations on the synthesis of ZnO nanoparticles. Journal of Colloid and Interface Science, 2005, 288, 313-316.	9.4	39
153	Synthesis of ZnO Nanoparticles in 2-Propanol by Reaction with Water. Journal of Physical Chemistry B, 2005, 109, 11209-11214.	2.6	107
154	Electrodeposition of $Co[sub\ x]Pt[sub\ 1\hat{a}^2x]$ Thin Films. Journal of the Electrochemical Society, 2005, 152, C27.	2.9	28
155	Multi-component nanorods for vaccination applications. Nanotechnology, 2005, 16, 484-487.	2.6	135
156	Site-Selective Patterning Using Surfactant-Based Resists. Journal of the American Chemical Society, 2005, 127, 11960-11962.	13.7	36
157	Kinetic Monte Carlo Simulations of Nucleation and Growth in Electrodeposition. Journal of Physical Chemistry B, 2005, 109, 24008-24015.	2.6	30
158	Electrodeposition of bismuth thin films on n-GaAs (110). Applied Physics Letters, 2005, 86, 121916.	3.3	29
159	Electrochemical Deposition of Platinum from Aqueous Ammonium Hexachloroplatinate Solution. Journal of the Electrochemical Society, 2005, 152, C738.	2.9	55
160	Fabrication and magnetic properties of fcc CoXPt1â^'X nanowires. Applied Physics Letters, 2004, 84, 3900-3902.	3.3	66
161	Influence of Oxide Thickness on Nucleation and Growth of Copper on Tantalum. Journal of the Electrochemical Society, 2004, 151, C369.	2.9	45
162	Electrochemical Synthesis of 3D Ordered Ferromagnetic Nickel Replicas Using Self-Assembled Colloidal Crystal Templates. Chemistry of Materials, 2004, 16, 5027-5032.	6.7	44

#	Article	IF	CITATIONS
163	Directed Assembly of Multisegment Au/Pt/Au Nanowires. Nano Letters, 2004, 4, 1163-1165.	9.1	72
164	Fabrication of Nanoporous Nickel by Electrochemical Dealloying. Chemistry of Materials, 2004, 16, 3125-3129.	6.7	222
165	Determination of the Particle Size Distribution of Quantum Nanocrystals from Absorbance Spectra. Advanced Materials, 2003, 15, 1289-1291.	21.0	141
166	Influence of solvent on the growth of ZnO nanoparticles. Journal of Colloid and Interface Science, 2003, 263, 454-460.	9.4	302
167	Multifunctional nanorods for gene delivery. Nature Materials, 2003, 2, 668-671.	27.5	700
168	Synthesis and Characterization of Nanoporous Gold Nanowires. Journal of Physical Chemistry B, 2003, 107, 4494-4499.	2.6	205
169	Relationship between Absorbance Spectra and Particle Size Distributions for Quantum-Sized Nanocrystals. Journal of Physical Chemistry B, 2003, 107, 10412-10415.	2.6	212
170	The Growth Kinetics of TiO2Nanoparticles from Titanium(IV) Alkoxide at High Water/Titanium Ratio. Journal of Physical Chemistry B, 2003, 107, 1734-1738.	2.6	308
171	Micromagnetic behavior of electrodeposited Ni/Cu multilayer nanowires. Journal of Applied Physics, 2003, 93, 8253-8255.	2.5	68
172	The Influence of Anion on the Coarsening Kinetics of ZnO Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 3124-3130.	2.6	135
173	Deposition of Au[sub x]Ag[sub $1\hat{a}^2x$]/Au[sub y]Ag[sub $1\hat{a}^2y$] Multilayers and Multisegment Nanowires. Journal of the Electrochemical Society, 2003, 150, C523.	2.9	21
174	Direct Copper Electrodeposition on TaN Barrier Layers. Journal of the Electrochemical Society, 2003, 150, C362.	2.9	70
175	Tuning the response of magnetic suspensions. Applied Physics Letters, 2003, 82, 3310-3312.	3.3	57
176	Electrodeposition of Ni/SiC contacts. Journal of Applied Physics, 2003, 93, 10104-10109.	2.5	4
177	Synthesis and Characterization of Metal Oxide Nanoparticles. , 2003, , 149-156.		0
178	Influence of Additives on Nucleation and Growth of Copper on n-Si(111) from Acidic Sulfate Solutions. Journal of the Electrochemical Society, 2002, 149, C94.	2.9	64
179	Magnetic trapping and self-assembly of multicomponent nanowires. Journal of Applied Physics, 2002, 91, 8549.	2.5	163
180	Quenching of Growth of ZnO Nanoparticles by Adsorption of Octanethiol. Journal of Physical Chemistry B, 2002, 106, 6985-6990.	2.6	213

#	Article	IF	CITATIONS
181	Coarsening of metal oxide nanoparticles. Physical Review E, 2002, 66, 011403.	2.1	130
182	Fabrication of nanoporous gold nanowires. Applied Physics Letters, 2002, 81, 4437-4439.	3.3	118
183	Kinetics of Particle Codeposition of Nanocomposites. Journal of the Electrochemical Society, 2002, 149, C610.	2.9	73
184	Electrodeposited magnetic nanowires: arrays, field-induced assembly, and surface functionalization. Journal of Magnetism and Magnetic Materials, 2002, 249, 146-155.	2.3	56
185	Magnetic Alignment of Fluorescent Nanowires. Nano Letters, 2001, 1, 155-158.	9.1	279
186	Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells. Journal of Physical Chemistry B, 2001, 105, 6867-6873.	2.6	356
187	Influence of Organic Capping Ligands on the Growth Kinetics of ZnO Nanoparticles. Langmuir, 2001, 17, 8362-8367.	3.5	152
188	Electrodeposition of Copper on Silicon from Sulfate Solution. Journal of the Electrochemical Society, 2001, 148, C746.	2.9	52
189	Electrochemical nucleation and growth of copper on Si(111). Surface Science, 2001, 492, 115-124.	1.9	49
190	Epitaxial Assembly in Aged Colloids. Journal of Physical Chemistry B, 2001, 105, 2177-2182.	2.6	244
191	Direct Numerical Simulation of Nucleation and Three-Dimensional, Diffusion-Controlled Growth. Journal of the Electrochemical Society, 2001, 148, C376.	2.9	43
192	Nucleation and Growth of Copper on TiN from Pyrophosphate Solution. Journal of the Electrochemical Society, 2001, 148, C41.	2.9	111
193	Magnetic anisotropy in prismatic nickel nanowires. Applied Physics Letters, 2001, 79, 4429-4431.	3.3	69
194	Electrochemistry of Gold Deposition on n-Si(100). Journal of the Electrochemical Society, 2000, 147, 2199.	2.9	68
195	Electrochemical Etching of n-Type Silicon in Fluoride Solutions. Journal of the Electrochemical Society, 2000, 147, 2999.	2.9	13
196	Photoluminescence of substituted phenyleneâ€"thienyl based polymers. Synthetic Metals, 2000, 113, 151-154.	3.9	5
197	Design and synthesis of a series of substituted polyphenylene-thiophenes. Synthetic Metals, 2000, 108, 33-38.	3.9	9
198	Electrochemical nucleation and growth of gold on silicon. Surface Science, 2000, 446, 103-111.	1.9	58

#	Article	IF	Citations
199	Growth Kinetics for Copper Deposition on Si(100) from Pyrophosphate Solution. Journal of the Electrochemical Society, 2000, 147, 2576.	2.9	42
200	Analysis of Hydrogen Trapping in Palladium by Modulated Permeation Spectroscopy. Journal of the Electrochemical Society, 2000, 147, 3456.	2.9	11
201	Particle Codeposition in Nanocomposite Films. Journal of the Electrochemical Society, 2000, 147, 2572.	2.9	110
202	Electrochemical formation of GaAs/Bi Schottky barriers. Applied Physics Letters, 1999, 75, 3135-3137.	3.3	19
203	Large Magnetoresistance of Electrodeposited Single-Crystal Bismuth Thin Films. Science, 1999, 284, 1335-1337.	12.6	484
204	Electrochemical Deposition of Copper on nâ€Si/TiN. Journal of the Electrochemical Society, 1999, 146, 1436-1441.	2.9	117
205	ZnO quantum particle thin films fabricated by electrophoretic deposition. Applied Physics Letters, 1999, 74, 2939-2941.	3.3	461
206	Kinetics of Electrophoretic Deposition of Zinc Oxide Quantum Particle Thin Films. Chemistry of Materials, 1999, 11, 1959-1961.	6.7	33
207	Growth Kinetics of Nanocrystalline ZnO Particles from Colloidal Suspensions. Journal of Physical Chemistry B, 1998, 102, 7770-7775.	2.6	339
208	The Potential Distribution at the Semiconductor/Solution Interface. Journal of Physical Chemistry B, 1998, 102, 7793-7799.	2.6	40
209	Electrochemical deposition of metals onto silicon. Journal Physics D: Applied Physics, 1998, 31, 1927-1949.	2.8	352
210	Characterization of silicon surfaces in HF solution using microwave reflectivity. Journal of Applied Physics, 1998, 83, 2112-2120.	2.5	14
211	Analysis of the impedance response due to surface states at the semiconductor/solution interface. Journal of Applied Physics, 1998, 83, 4309-4323.	2.5	20
212	Structural and magneto-transport properties of electrodeposited bismuth nanowires. Applied Physics Letters, 1998, 73, 1436-1438.	3.3	195
213	An all-polymer charge storage device. Applied Physics Letters, 1997, 71, 1582-1584.	3.3	97
214	Electron Transport in Porous Nanocrystalline TiO2Photoelectrochemical Cells. The Journal of Physical Chemistry, 1996, 100, 17021-17027.	2.9	394
215	Energetics and Kinetics of Surface States at n-Type Silicon Surfaces in Aqueous Fluoride Solutions. The Journal of Physical Chemistry, 1996, 100, 1801-1806.	2.9	37
216	Characterization of the Silicon / Fluoride Solution Interface by In-Situ Microwave Reflectivity. Materials Research Society Symposia Proceedings, 1996, 451, 197.	0.1	1

#	Article	IF	Citations
217	In SituMeasurements of Interface States at Silicon Surfaces in Fluoride Solutions. Physical Review Letters, 1996, 76, 1521-1524.	7.8	46
218	Electrochemical Deposition of Metals on Semiconductors. Materials Research Society Symposia Proceedings, 1996, 451, 257.	0.1	8
219	In Situ Observation of an Electrochemical Etching Reaction in Silicon. Materials Research Society Symposia Proceedings, 1995, 404, 69.	0.1	0
220	High Charge Density Conducting Polymer/Graphite Fiber Composite Electrodes for Battery Applications. Journal of the Electrochemical Society, 1995, 142, 321-325.	2.9	87
221	Perpendicular giant magnetoresistance of multilayered Co/Cu nanowires. Physical Review B, 1995, 51, 7381-7384.	3.2	285
222	Measurement of the frequency dependent quantum efficiency by transient excitation. Electrochimica Acta, 1993, 38, 1913-1917.	5.2	2
223	Frequency Domain Analysis of Photoprocesses at Illuminated Semiconductor Electrodes by Transient Transformation. Journal of the Electrochemical Society, 1992, 139, 2538-2543.	2.9	16
224	Influence of stress on the photoluminescence of porous silicon structures. Applied Physics Letters, 1992, 60, 2285-2287.	3.3	71
225	Microluminescence depth profiles and annealing effects in porous silicon. Applied Physics Letters, 1992, 60, 3295-3297.	3.3	76
226	Pore morphology and the mechanism of pore formation innâ€type silicon. Journal of Applied Physics, 1992, 72, 253-258.	2.5	110
227	The Formation, Morphology, and Optical Properties of Porous Silicon Structures. Journal of the Electrochemical Society, 1992, 139, 3373-3377.	2.9	115
228	SiHxexcitation: An alternate mechanism for porous Si photoluminescence. Physical Review B, 1992, 45, 13788-13791.	3.2	333
229	Electrochemical deposition of novel materials and structures. Solar Energy Materials and Solar Cells, 1992, 27, 377-388.	6.2	17
230	Porous silicon membranes. Applied Physics Letters, 1991, 59, 832-833.	3.3	64
231	Effect of surface treatment on SrTiO3: An xâ€ray photoelectron spectroscopic study. Journal of Applied Physics, 1991, 69, 459-462.	2.5	65
232	The Anodic Dissolution of Silicon in HF Solutions. Journal of the Electrochemical Society, 1990, 137, 2539-2546.	2.9	96
233	Analysis of Electrochemical Noise Generated by Corroding Electrodes under Openâ€Circuit Conditions. Journal of the Electrochemical Society, 1988, 135, 1908-1915.	2.9	108
234	Analysis of the Photoelectrochemical Response of the Passive Film on Iron in Neutral Solutions. Journal of the Electrochemical Society, 1988, 135, 1358-1363.	2.9	72

#	Article	lF	CITATIONS
235	Use of AC Impedance Technique in Studies on Steel in Concrete in Immersed Conditions. Corrosion Engineering Science and Technology, 1981, 16, 102-106.	0.3	131