Nicolas Charles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4988969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mast cells in kidney regeneration. , 2022, , 103-126.		Ο
2	AMG853, A Bispecific Prostaglandin D2 Receptor 1 and 2 Antagonist, Dampens Basophil Activation and Related Lupus-Like Nephritis Activity in Lyn-Deficient Mice. Frontiers in Immunology, 2022, 13, 824686.	2.2	3
3	CD62L on blood basophils: a first pre-treatment predictor of remission in severe lupus nephritis. Nephrology Dialysis Transplantation, 2021, 36, 2256-2262.	0.4	5
4	Effects of BAFF Neutralization on Atherosclerosis Associated With Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2021, 73, 255-264.	2.9	16
5	Basophils and IgE contribute to mixed connective tissue disease development. Journal of Allergy and Clinical Immunology, 2021, 147, 1478-1489.e11.	1.5	14
6	Urinary Peptides as Potential Non-Invasive Biomarkers for Lupus Nephritis: Results of the Peptidu-LUP Study. Journal of Clinical Medicine, 2021, 10, 1690.	1.0	10
7	Autoimmunity, IgE and FcεRI-bearing cells. Current Opinion in Immunology, 2021, 72, 43-50.	2.4	15
8	Mast Cell Chymase and Kidney Disease. International Journal of Molecular Sciences, 2021, 22, 302.	1.8	8
9	Mast cell chymase protects against acute ischemic kidney injury by limiting neutrophil hyperactivation and recruitment. Kidney International, 2020, 97, 516-527.	2.6	14
10	The "Mast Cell and Basophil Club―of the French Society for Immunology. European Journal of Immunology, 2020, 50, 1430-1431.	1.6	0
11	IgE in the Pathogenesis of SLE: From Pathogenic Role to Therapeutic Target. Antibodies, 2020, 9, 69.	1.2	7
12	Basophil involvement in lupus nephritis: a basis for innovation in daily care. Nephrology Dialysis Transplantation, 2019, 34, 750-756.	0.4	5
13	MicroRNA-146a-deficient mice develop immune complex glomerulonephritis. Scientific Reports, 2019, 9, 15597.	1.6	10
14	TLR4 Receptor Induces 2-AG–Dependent Tolerance to Lipopolysaccharide and Trafficking of CB2 Receptor in Mast Cells. Journal of Immunology, 2019, 202, 2360-2371.	0.4	23
15	Safety and Tolerability of Omalizumab: A Randomized Clinical Trial of Humanized Antiâ€ i gE Monoclonal Antibody in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2019, 71, 1135-1140.	2.9	46
16	Prostaglandin D2 amplifies lupus disease through basophil accumulation in lymphoid organs. Nature Communications, 2018, 9, 725.	5.8	56
17	Nonâ€lgE mediated mast cell activation. Immunological Reviews, 2018, 282, 87-113.	2.8	143
18	lgE in lupus pathogenesis: Friends or foes?. Autoimmunity Reviews, 2018, 17, 361-365.	2.5	14

NICOLAS CHARLES

#	Article	IF	CITATIONS
19	Mast Cell Degranulation Exacerbates Skin Rejection by Enhancing Neutrophil Recruitment. Frontiers in Immunology, 2018, 9, 2690.	2.2	27
20	Tomosyn functions as a PKCδ-regulated fusion clamp in mast cell degranulation. Science Signaling, 2018, 11, .	1.6	15
21	Early Phase Mast Cell Activation Determines the Chronic Outcome of Renal Ischemia–Reperfusion Injury. Journal of Immunology, 2017, 198, 2374-2382.	0.4	30
22	Basophils contribute to pristane-induced Lupus-like nephritis model. Scientific Reports, 2017, 7, 7969.	1.6	28
23	Lyn and Fyn function as molecular switches that control immunoreceptors to direct homeostasis or inflammation. Nature Communications, 2017, 8, 246.	5.8	87
24	Phospholipid scramblase 1 amplifies anaphylactic reactions in vivo. PLoS ONE, 2017, 12, e0173815.	1.1	8
25	Autoantibodies in SLE: Specificities, Isotypes and Receptors. Antibodies, 2016, 5, 2.	1.2	106
26	Identification of Biological and Pharmaceutical Mast Cell―and Basophilâ€Related Targets. Scandinavian Journal of Immunology, 2016, 83, 465-472.	1.3	1
27	The high-affinity immunoglobulin E receptor as pharmacological target. European Journal of Pharmacology, 2016, 778, 24-32.	1.7	12
28	Basophils. , 2016, , 196-202.		0
28 29	Basophils. , 2016, , 196-202. CD4+CXCR3+ T cells and plasmacytoid dendritic cells drive accelerated atherosclerosis associated with systemic lupus erythematosus. Journal of Autoimmunity, 2015, 63, 59-67.	3.0	0 39
28 29 30	Basophils., 2016, , 196-202. CD4+CXCR3+ T cells and plasmacytoid dendritic cells drive accelerated atherosclerosis associated with systemic lupus erythematosus. Journal of Autoimmunity, 2015, 63, 59-67. Mast cells in renal inflammation and fibrosis: Lessons learnt from animal studies. Molecular Immunology, 2015, 63, 86-93.	3.0	0 39 37
28 29 30 31	Basophils., 2016, , 196-202. CD4+CXCR3+ T cells and plasmacytoid dendritic cells drive accelerated atherosclerosis associated with systemic lupus erythematosus. Journal of Autoimmunity, 2015, 63, 59-67. Mast cells in renal inflammation and fibrosis: Lessons learnt from animal studies. Molecular Immunology, 2015, 63, 86-93. Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. Journal of Clinical Investigation, 2014, 124, 4577-4589.	3.0 1.0 3.9	0 39 37 111
28 29 30 31 32	Basophils., 2016, 196-202. CD4+CXCR3+ T cells and plasmacytoid dendritic cells drive accelerated atherosclerosis associated with systemic lupus erythematosus. Journal of Autoimmunity, 2015, 63, 59-67. Mast cells in renal inflammation and fibrosis: Lessons learnt from animal studies. Molecular Immunology, 2015, 63, 86-93. Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. Journal of Clinical Investigation, 2014, 124, 4577-4589. Immunoglobulin E plays an immunoregulatory role in lupus. Journal of Experimental Medicine, 2014, 211, 2159-2168.	3.0 1.0 3.9 4.2	0 39 37 111 78
28 29 30 31 32 33	Basophils., 2016, 196-202. CD4+CXCR3+ T cells and plasmacytoid dendritic cells drive accelerated atherosclerosis associated with systemic lupus erythematosus. Journal of Autoimmunity, 2015, 63, 59-67. Mast cells in renal inflammation and fibrosis: Lessons learnt from animal studies. Molecular Immunology, 2015, 63, 86-93. Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. Journal of Clinical Investigation, 2014, 124, 4577-4589. Immunoglobulin E plays an immunoregulatory role in lupus. Journal of Experimental Medicine, 2014, 211, 2159-2168. Autoreactive IgE Is Prevalent in Systemic Lupus Erythematosus and Is Associated with Increased Disease Activity and Nephritis. PLoS ONE, 2014, 9, e90424.	3.0 1.0 3.9 4.2 1.1	0 39 37 111 78
28 29 30 31 32 33 33	Basophils., 2016, , 196-202.CD4+CXCR3+ T cells and plasmacytoid dendritic cells drive accelerated atherosclerosis associated with systemic lupus erythematosus. Journal of Autoimmunity, 2015, 63, 59-67.Mast cells in renal inflammation and fibrosis: Lessons learnt from animal studies. Molecular Immunology, 2015, 63, 86-93.Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. Journal of Clinical Investigation, 2014, 124, 4577-4589.Immunoglobulin E plays an immunoregulatory role in lupus. Journal of Experimental Medicine, 2014, 11, 2159-2168.Autoreactive IgE Is Prevalent in Systemic Lupus Erythematosus and Is Associated with Increased Disease Activity and Nephritis. PLoS ONE, 2014, 9, e90424.Regulation of the Tyrosine Phosphorylation of Phospholipid Scramblase 1 in Mast Cells That Are Stimulated through the High-Affinity IgE Receptor. PLoS ONE, 2014, 9, e109800.	3.0 1.0 3.9 4.2 1.1 1.1	0 39 37 111 78 103 8
28 29 30 31 32 33 33 34	Basophils., 2016, 196-202. CD4+CXCR3+ T cells and plasmacytoid dendritic cells drive accelerated atherosclerosis associated with systemic lupus erythematosus. Journal of Autoimmunity, 2015, 63, 59-67. Mast cells in renal inflammation and fibrosis: Lessons learnt from animal studies. Molecular Immunology, 2015, 63, 86-93. Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. Journal of Clinical Investigation, 2014, 124, 4577-4589. Immunoglobulin E plays an immunoregulatory role in lupus. Journal of Experimental Medicine, 2014, 211, 2159-2168. Autoreactive IgE Is Prevalent in Systemic Lupus Erythematosus and Is Associated with Increased Disease Activity and Nephritis. PLoS ONE, 2014, 9, e90424. Regulation of the Tyrosine Phosphorylation of Phospholipid Scramblase 1 in Mast Cells That Are Stimulated through the High-Affinity IgE Receptor. PLoS ONE, 2014, 9, e109800. Advances in mechanisms of systemic lupus erythematosus. Discovery Medicine, 2014, 17, 247-55.	3.0 1.0 3.9 4.2 1.1 1.1	0 39 37 111 78 103 8

3

NICOLAS CHARLES

#	Article	IF	CITATIONS
37	Cyclosporine A Impairs Nucleotide Binding Oligomerization Domain (Nod1)-Mediated Innate Antibacterial Renal Defenses in Mice and Human Transplant Recipients. PLoS Pathogens, 2013, 9, e1003152.	2.1	45
38	Basophils. , 2013, , 1-8.		0
39	Cutting Edge: Persistence of Increased Mast Cell Numbers in Tissues Links Dermatitis to Enhanced Airway Disease in a Mouse Model of Atopy. Journal of Immunology, 2012, 188, 531-535.	0.4	17
40	Lyn but Not Fyn Kinase Controls IgG-Mediated Systemic Anaphylaxis. Journal of Immunology, 2012, 188, 4360-4368.	0.4	28
41	Naive T cells sense the cysteine protease allergen papain through protease-activated receptor 2 and propel TH2 immunity. Journal of Allergy and Clinical Immunology, 2012, 129, 1377-1386.e13.	1.5	51
42	Reply to: Basophils from humans with systemic lupus erythematosus do not express MHC-II. Nature Medicine, 2012, 18, 489-490.	15.2	10
43	Mast Cell Interleukin-2 Production Contributes to Suppression of Chronic Allergic Dermatitis. Immunity, 2011, 35, 562-571.	6.6	98
44	Mast cells as cellular sensors in inflammation and immunity. Frontiers in Immunology, 2011, 2, 37.	2.2	74
45	PTEN deficiency in mast cells causes a mastocytosis-like proliferative disease that heightens allergic responses and vascular permeability. Blood, 2011, 118, 5466-5475.	0.6	31
46	Basophils and Autoreactive IgE in the Pathogenesis of Systemic Lupus Erythematosus. Current Allergy and Asthma Reports, 2011, 11, 378-387.	2.4	39
47	Regulation of MicroRNA Expression and Abundance during Lymphopoiesis. Immunity, 2010, 32, 828-839.	6.6	307
48	Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nature Medicine, 2010, 16, 701-707.	15.2	287
49	Ablation of Tumor Progression Locus 2 Promotes a Type 2 Th Cell Response in Ovalbumin-Immunized Mice. Journal of Immunology, 2010, 184, 105-113.	0.4	36
50	Evidence for neuronal expression of functional Fc (ε and γ) receptors. Journal of Allergy and Clinical Immunology, 2010, 125, 757-760.	1.5	71
51	The protective role of Tregs and Mast Cells in Chronic Allergic Dermatitis. Journal of Allergy and Clinical Immunology, 2010, 125, AB180.	1.5	0
52	Lyn Kinase Controls Basophil GATA-3 Transcription Factor Expression and Induction of Th2 Cell Differentiation. Immunity, 2009, 30, 533-543.	6.6	85
53	Kit- and FcɛRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells. Cellular Signalling, 2008, 20, 195-205.	1.7	64
54	Phospholipid Scramblase 1 Modulates a Selected Set of IgE Receptor-mediated Mast Cell Responses through LAT-dependent Pathway. Journal of Biological Chemistry, 2008, 283, 25514-25523.	1.6	34

NICOLAS CHARLES

#	Article	IF	CITATIONS
55	Cutting Edge: Genetic Variation Influences FcεRI-Induced Mast Cell Activation and Allergic Responses. Journal of Immunology, 2007, 179, 740-743.	0.4	70
56	B LYMPHOCYTES UNDERGO APOPTOSIS BECAUSE OF FcÎ ³ RIIb stress response to infection: A novel mechanism of cell death in sepsis. Shock, 2006, 25, 61-65.	1.0	9
57	p28, a Novel IgE Receptor-associated Protein, Is a Sensor of Receptor Occupation by Its Ligand in Mast Cells. Journal of Biological Chemistry, 2004, 279, 12312-12318.	1.6	13
58	Phospholipid scramblase, a new effector of FcÎμRI signaling in mast cells. Molecular Immunology, 2002, 38, 1235-1238.	1.0	14
59	lgE Receptor Type I-dependent Tyrosine Phosphorylation of Phospholipid Scramblase. Journal of Biological Chemistry, 2001, 276, 20407-20412.	1.6	38
60	CT-M8 Mice: A New Mouse Model Demonstrates That Basophils Have a Nonredundant Role in Lupus-Like Disease Development. Frontiers in Immunology, 0, 13, .	2.2	5