
Nicolas Charles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4988969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of MicroRNA Expression and Abundance during Lymphopoiesis. Immunity, 2010, 32, 828-839.	6.6	307
2	Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nature Medicine, 2010, 16, 701-707.	15.2	287
3	Nonâ€lgE mediated mast cell activation. Immunological Reviews, 2018, 282, 87-113.	2.8	143
4	Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. Journal of Clinical Investigation, 2014, 124, 4577-4589.	3.9	111
5	Autoantibodies in SLE: Specificities, Isotypes and Receptors. Antibodies, 2016, 5, 2.	1.2	106
6	Autoreactive IgE Is Prevalent in Systemic Lupus Erythematosus and Is Associated with Increased Disease Activity and Nephritis. PLoS ONE, 2014, 9, e90424.	1.1	103
7	Mast Cell Interleukin-2 Production Contributes to Suppression of Chronic Allergic Dermatitis. Immunity, 2011, 35, 562-571.	6.6	98
8	Lyn and Fyn function as molecular switches that control immunoreceptors to direct homeostasis or inflammation. Nature Communications, 2017, 8, 246.	5.8	87
9	Lyn Kinase Controls Basophil GATA-3 Transcription Factor Expression and Induction of Th2 Cell Differentiation. Immunity, 2009, 30, 533-543.	6.6	85
10	Immunoglobulin E plays an immunoregulatory role in lupus. Journal of Experimental Medicine, 2014, 211, 2159-2168.	4.2	78
11	Mast cells as cellular sensors in inflammation and immunity. Frontiers in Immunology, 2011, 2, 37.	2.2	74
12	Evidence for neuronal expression of functional Fc (Îμ and γ) receptors. Journal of Allergy and Clinical Immunology, 2010, 125, 757-760.	1.5	71
13	Cutting Edge: Genetic Variation Influences FcεRI-Induced Mast Cell Activation and Allergic Responses. Journal of Immunology, 2007, 179, 740-743.	0.4	70
14	Kit- and FcɛRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells. Cellular Signalling, 2008, 20, 195-205.	1.7	64
15	Prostaglandin D2 amplifies lupus disease through basophil accumulation in lymphoid organs. Nature Communications, 2018, 9, 725.	5.8	56
16	Naive T cells sense the cysteine protease allergen papain through protease-activated receptor 2 and propel TH2 immunity. Journal of Allergy and Clinical Immunology, 2012, 129, 1377-1386.e13.	1.5	51
17	Safety and Tolerability of Omalizumab: A Randomized Clinical Trial of Humanized Antiâ€ i gE Monoclonal Antibody in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2019, 71, 1135-1140.	2.9	46
18	Cyclosporine A Impairs Nucleotide Binding Oligomerization Domain (Nod1)-Mediated Innate Antibacterial Renal Defenses in Mice and Human Transplant Recipients. PLoS Pathogens, 2013, 9, e1003152.	2.1	45

NICOLAS CHARLES

#	Article	IF	CITATIONS
19	Basophils and Autoreactive IgE in the Pathogenesis of Systemic Lupus Erythematosus. Current Allergy and Asthma Reports, 2011, 11, 378-387.	2.4	39
20	CD4+CXCR3+ T cells and plasmacytoid dendritic cells drive accelerated atherosclerosis associated with systemic lupus erythematosus. Journal of Autoimmunity, 2015, 63, 59-67.	3.0	39
21	IgE Receptor Type I-dependent Tyrosine Phosphorylation of Phospholipid Scramblase. Journal of Biological Chemistry, 2001, 276, 20407-20412.	1.6	38
22	Mast cells in renal inflammation and fibrosis: Lessons learnt from animal studies. Molecular Immunology, 2015, 63, 86-93.	1.0	37
23	Advances in mechanisms of systemic lupus erythematosus. Discovery Medicine, 2014, 17, 247-55.	0.5	37
24	Ablation of Tumor Progression Locus 2 Promotes a Type 2 Th Cell Response in Ovalbumin-Immunized Mice. Journal of Immunology, 2010, 184, 105-113.	0.4	36
25	Phospholipid Scramblase 1 Modulates a Selected Set of IgE Receptor-mediated Mast Cell Responses through LAT-dependent Pathway. Journal of Biological Chemistry, 2008, 283, 25514-25523.	1.6	34
26	PTEN deficiency in mast cells causes a mastocytosis-like proliferative disease that heightens allergic responses and vascular permeability. Blood, 2011, 118, 5466-5475.	0.6	31
27	Early Phase Mast Cell Activation Determines the Chronic Outcome of Renal Ischemia–Reperfusion Injury. Journal of Immunology, 2017, 198, 2374-2382.	0.4	30
28	Lyn but Not Fyn Kinase Controls IgG-Mediated Systemic Anaphylaxis. Journal of Immunology, 2012, 188, 4360-4368.	0.4	28
29	The deleterious role of basophils in systemic lupus erythematosus. Current Opinion in Immunology, 2013, 25, 704-711.	2.4	28
30	Basophils contribute to pristane-induced Lupus-like nephritis model. Scientific Reports, 2017, 7, 7969.	1.6	28
31	Mast Cell Degranulation Exacerbates Skin Rejection by Enhancing Neutrophil Recruitment. Frontiers in Immunology, 2018, 9, 2690.	2.2	27
32	TLR4 Receptor Induces 2-AG–Dependent Tolerance to Lipopolysaccharide and Trafficking of CB2 Receptor in Mast Cells. Journal of Immunology, 2019, 202, 2360-2371.	0.4	23
33	Cutting Edge: Persistence of Increased Mast Cell Numbers in Tissues Links Dermatitis to Enhanced Airway Disease in a Mouse Model of Atopy. Journal of Immunology, 2012, 188, 531-535.	0.4	17
34	Effects of BAFF Neutralization on Atherosclerosis Associated With Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2021, 73, 255-264.	2.9	16
35	Tomosyn functions as a PKCδ-regulated fusion clamp in mast cell degranulation. Science Signaling, 2018, 11, .	1.6	15
36	Autoimmunity, IgE and FcÎμRI-bearing cells. Current Opinion in Immunology, 2021, 72, 43-50.	2.4	15

NICOLAS CHARLES

#	Article	IF	CITATIONS
37	Phospholipid scramblase, a new effector of FcεRI signaling in mast cells. Molecular Immunology, 2002, 38, 1235-1238.	1.0	14
38	IgE in lupus pathogenesis: Friends or foes?. Autoimmunity Reviews, 2018, 17, 361-365.	2.5	14
39	Mast cell chymase protects against acute ischemic kidney injury by limiting neutrophil hyperactivation and recruitment. Kidney International, 2020, 97, 516-527.	2.6	14
40	Basophils and IgE contribute to mixed connective tissue disease development. Journal of Allergy and Clinical Immunology, 2021, 147, 1478-1489.e11.	1.5	14
41	p28, a Novel IgE Receptor-associated Protein, Is a Sensor of Receptor Occupation by Its Ligand in Mast Cells. Journal of Biological Chemistry, 2004, 279, 12312-12318.	1.6	13
42	The high-affinity immunoglobulin E receptor as pharmacological target. European Journal of Pharmacology, 2016, 778, 24-32.	1.7	12
43	Reply to: Basophils from humans with systemic lupus erythematosus do not express MHC-II. Nature Medicine, 2012, 18, 489-490.	15.2	10
44	MicroRNA-146a-deficient mice develop immune complex glomerulonephritis. Scientific Reports, 2019, 9, 15597.	1.6	10
45	Urinary Peptides as Potential Non-Invasive Biomarkers for Lupus Nephritis: Results of the Peptidu-LUP Study. Journal of Clinical Medicine, 2021, 10, 1690.	1.0	10
46	B LYMPHOCYTES UNDERGO APOPTOSIS BECAUSE OF FcÎ ³ RIIb stress response to infection: A novel mechanism of cell death in sepsis. Shock, 2006, 25, 61-65.	1.0	9
47	Regulation of the Tyrosine Phosphorylation of Phospholipid Scramblase 1 in Mast Cells That Are Stimulated through the High-Affinity IgE Receptor. PLoS ONE, 2014, 9, e109800.	1.1	8
48	Phospholipid scramblase 1 amplifies anaphylactic reactions in vivo. PLoS ONE, 2017, 12, e0173815.	1.1	8
49	Mast Cell Chymase and Kidney Disease. International Journal of Molecular Sciences, 2021, 22, 302.	1.8	8
50	IgE in the Pathogenesis of SLE: From Pathogenic Role to Therapeutic Target. Antibodies, 2020, 9, 69.	1.2	7
51	Basophil involvement in lupus nephritis: a basis for innovation in daily care. Nephrology Dialysis Transplantation, 2019, 34, 750-756.	0.4	5
52	CD62L on blood basophils: a first pre-treatment predictor of remission in severe lupus nephritis. Nephrology Dialysis Transplantation, 2021, 36, 2256-2262.	0.4	5
53	CT-M8 Mice: A New Mouse Model Demonstrates That Basophils Have a Nonredundant Role in Lupus-Like Disease Development. Frontiers in Immunology, 0, 13, .	2.2	5
54	AMG853, A Bispecific Prostaglandin D2 Receptor 1 and 2 Antagonist, Dampens Basophil Activation and Related Lupus-Like Nephritis Activity in Lyn-Deficient Mice. Frontiers in Immunology, 2022, 13, 824686.	2.2	3

NICOLAS CHARLES

#	Article	IF	CITATIONS
55	Identification of Biological and Pharmaceutical Mast Cell―and Basophilâ€Related Targets. Scandinavian Journal of Immunology, 2016, 83, 465-472.	1.3	1
56	The protective role of Tregs and Mast Cells in Chronic Allergic Dermatitis. Journal of Allergy and Clinical Immunology, 2010, 125, AB180.	1.5	0
57	The "Mast Cell and Basophil Club―of the French Society for Immunology. European Journal of Immunology, 2020, 50, 1430-1431.	1.6	0
58	Mast cells in kidney regeneration. , 2022, , 103-126.		0
59	Basophils. , 2013, , 1-8.		0
60	Basophils. , 2016, , 196-202.		0