Chris Mays

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4988802/publications.pdf

Version: 2024-02-01

		567281	552781
28	696	15	26
papers	citations	h-index	g-index
28	28	28	555
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nature Communications, 2019, 10, 385.	12.8	165
2	End-Permian (252 Mya) deforestation, wildfires and floodingâ€"An ancient biotic crisis with lessons for the present. Earth and Planetary Science Letters, 2020, 529, 115875.	4.4	108
3	Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. Bulletin of the Geological Society of America, 2020, 132, 1489-1513.	3.3	66
4	Sedimentology of the continental endâ€Permian extinction event in the Sydney Basin, eastern Australia. Sedimentology, 2021, 68, 30-62.	3.1	28
5	Climatic implications of Ginkgoites waarrensis Douglas emend. from the south polar Tupuangi flora, Late Cretaceous (Cenomanian), Chatham Islands. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438, 308-326.	2.3	26
6	Amber from the Triassic to Paleogene of Australia and New Zealand as exceptional preservation of poorly known terrestrial ecosystems. Scientific Reports, 2020, 10, 5703.	3.3	25
7	Lethal microbial blooms delayed freshwater ecosystem recovery following the end-Permian extinction. Nature Communications, 2021, 12, 5511.	12.8	23
8	Late Cretaceous (Cenomanian–Turonian) macroflora from the Chatham Islands, New Zealand: Bryophytes, lycophytes and pteridophytes. Gondwana Research, 2015, 27, 1042-1060.	6.0	22
9	Reconstructing Krassilovia mongolica supports recognition of a new and unusual group of Mesozoic conifers. PLoS ONE, 2020, 15, e0226779.	2.5	22
10	Polar wildfires and conifer serotiny during the Cretaceous global hothouse. Geology, 2017, 45, 1119-1122.	4.4	21
11	Permian–Triassic non-marine algae of Gondwana—Distributions, natural affinities and ecological implications. Earth-Science Reviews, 2021, 212, 103382.	9.1	21
12	END-PERMIAN BURNOUT: THE ROLE OF PERMIAN–TRIASSIC WILDFIRES IN EXTINCTION, CARBON CYCLING, AND ENVIRONMENTAL CHANGE IN EASTERN GONDWANA. Palaios, 2022, 37, 292-317.	1.3	18
13	Pollen and spore biostratigraphy of the mid-Cretaceous Tupuangi Formation, Chatham Islands, New Zealand. Review of Palaeobotany and Palynology, 2013, 192, 79-102.	1.5	17
14	A New High-Paleolatitude Late Permian Permineralized Peat Flora from the Sydney Basin, Australia. International Journal of Plant Sciences, 2019, 180, 513-539.	1.3	17
15	DWELLING IN THE DEAD ZONE—VERTEBRATE BURROWS IMMEDIATELY SUCCEEDING THE END-PERMIAN EXTINCTION EVENT IN AUSTRALIA. Palaios, 2020, 35, 342-357.	1.3	17
16	Age and Paleoenvironmental Significance of the Frazer Beach Memberâ€"A New Lithostratigraphic Unit Overlying the End-Permian Extinction Horizon in the Sydney Basin, Australia. Frontiers in Earth Science, 2021, 8, .	1.8	17
17	Environmental change in the late Permian of Queensland, NE Australia: The warmup to the end-Permian Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 594, 110936.	2.3	12
18	Taphonomy and chemotaxonomy of Eocene amber from southeastern Australia. Organic Geochemistry, 2018, 118, 103-115.	1.8	11

#	Article	IF	Citations
19	A model of tephra dispersal from an early Palaeogene shallow submarine Surtseyan-style eruption(s), the Red Bluff Tuff Formation, Chatham Island, New Zealand. Sedimentary Geology, 2014, 300, 86-102.	2.1	10
20	Neutron tomography of <i> Austrosequoia novae-zeelandia < /i > e comb. nov. (Late Cretaceous, Chatham) Tj ETQq0 Systematic Palaeontology, 2018, 16, 551-570.</i>	0 0 rgBT 1.5	/Overlock 10 9
21	The Range of Bioinclusions and Pseudoinclusions Preserved in a New Turonian (~90 Ma) Amber Occurrence from Southern Australia. PLoS ONE, 2015, 10, e0121307.	2.5	8
22	Judging an acritarch by its cover: the taxonomic implications of ⟨i⟩Introvertocystis rangiaotea ⟨li⟩gen. et sp. nov. from the Late Cretaceous (Cenomanian–Turonian) of the Chatham Islands, New Zealand. Palynology, 2012, 36, 180-190.	1.5	7
23	Neutron tomography, fluorescence and transmitted light microscopy reveal new insect damage, fungi and plant organ associations in the Late Cretaceous floras of Sweden. Gff, 0, , 1-29.	1.2	7
24	The botanical provenance and taphonomy of Late Cretaceous Chatham amber, Chatham Islands, New Zealand. Review of Palaeobotany and Palynology, 2019, 260, 16-26.	1.5	6
25	<i>Protodammara reimatamoriori</i> , a new species of conifer (Cupressaceae) from the Upper Cretaceous Tupuangi Formation, Chatham Islands, Zealandia. Alcheringa, 2019, 43, 114-126.	1.2	5
26	Palaeoenvironmental reconstruction of Livingston Island, Antarctic Peninsula, in the Early Cretaceous: interpretations from the Walker Bay erratics. Alcheringa, 2015, 39, 465-476.	1.2	3
27	South polar greenhouse insects (Arthropoda: Insecta: Coleoptera) from the mid-Cretaceous Tupuangi Formation, Chatham Islands, eastern Zealandia. Alcheringa, 2016, 40, 502-508.	1.2	3

Synchrotron X-ray imaging reveals the three-dimensional architecture of beetle borings (Dekosichnus) Tj ETQq0 0 0 rgBT /Overlock 10 To 2 and Palynology, 2022, 297, 104568.