
Yukinobu Goso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4988598/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of <i>A4gnt</i> Knockout Mice Reveals an Essential Role for Gastric Sulfomucins in Preventing Gastritis Cystica Profunda. Journal of Histochemistry and Cytochemistry, 2019, 67, 759-770.	2.5	3
2	Comparison of Methods to Release Mucin-Type O-Glycans for Glycomic Analysis. Analytical Chemistry, 2017, 89, 8870-8876.	6.5	21
3	Interleukin-13/interleukin-4 receptor pathway is crucial for production of Sd a -sialomucin in mouse small intestinal mucosa by Nippostrongylus brasiliensis infection. Parasitology International, 2017, 66, 731-734.	1.3	2
4	Malonic acid suppresses mucin-type O-glycan degradation during hydrazine treatment of glycoproteins. Analytical Biochemistry, 2016, 496, 35-42.	2.4	12
5	Discrimination of rat Brunner's gland carbohydrate antigens by site-specific monoclonal antibodies. Carbohydrate Research, 2016, 432, 76-82.	2.3	3
6	Induction of Sda-sialomucin and sulfated H-sulfomucin in mouse small intestinal mucosa by infection with parasitic helminth. Experimental Parasitology, 2015, 153, 165-173.	1.2	11
7	The monoclonal antibody HCM31 specifically recognises the Sd ^a tetrasaccharide in goblet cell mucin. FEBS Open Bio, 2012, 2, 223-233.	2.3	11
8	Rapid and specific alterations of goblet cell mucin in rat airway and small intestine associated with resistance against Nippostrongylus brasiliensis reinfection. Experimental Parasitology, 2012, 130, 209-217.	1.2	8
9	Essential role of gastric gland mucin in preventing gastric cancer in mice. Journal of Clinical Investigation, 2012, 122, 923-934.	8.2	86
10	Protective effect of geranylgeranylacetone against loxoprofen sodium-induced small intestinal lesions in rats. European Journal of Pharmacology, 2011, 652, 121-125.	3.5	12
11	Vulnerable Sites and Changes in Mucin in the Rat Small Intestine After Non-steroidal Anti-inflammatory Drugs Administration. Digestive Diseases and Sciences, 2010, 55, 3369-3376.	2.3	7
12	Evaluation of Conditions for Release of Mucin-Type Oligosaccharides from Glycoproteins by Hydrazine Gas Treatment. Journal of Biochemistry, 2009, 145, 739-749.	1.7	9
13	Nippostrongylus brasiliensis: Increase of sialomucins reacting with anti-mucin monoclonal antibody HCM31 in rat small intestinal mucosa with primary infection and reinfection. Experimental Parasitology, 2009, 123, 319-325.	1.2	14
14	Effects of indomethacin on the rat small intestinal mucosa: immunohistochemical and biochemical studies using anti-mucin monoclonal antibodies. Journal of Gastroenterology, 2009, 44, 277-284.	5.1	18
15	Effects of combination treatment with famotidine and methylmethionine sulfonium chloride on the mucus barrier of rat gastric mucosa. Journal of Gastroenterology and Hepatology (Australia), 2009, 24, 488-492.	2.8	18
16	Effects of Tea Catechins on the Gastrointestinal Mucosa in Rats. Journal of Agricultural and Food Chemistry, 2008, 56, 12122-12126.	5.2	10
17	Changes in the mucus barrier of the rat during 5-fluorouracil-induced gastrointestinal mucositis. Scandinavian Journal of Gastroenterology, 2008, 43, 59-65.	1.5	31
18	Effects of acid antisecretory drugs on mucus barrier of the rat against 5-fluorouracil-induced gastrointestinal mucositis. Scandinavian Journal of Gastroenterology, 2008, 43, 531-537.	1.5	23

Үикінови Goso

#	Article	IF	CITATIONS
19	Protective Effects of the Whisky Congeners on Ethanol-Induced Gastric Mucosal Damage. Alcoholism: Clinical and Experimental Research, 2007, 31, 390-394.	2.4	14
20	A monoclonal antibody, PGM34, against 6-sulfated blood-group H type 2 antigen, on the carbohydrate moiety of mucin. FEBS Journal, 2007, 274, 1833-1848.	4.7	22
21	Appearance of specific mucins recognized by monoclonal antibodies in rat gastric mucosa healing from HCl-induced gastric mucosal damage. Journal of Gastroenterology, 2004, 39, 113-119.	5.1	12
22	Characterization of Rat Gastric Mucins Using a Monoclonal Antibody, RGM23, Recognizing Surface Mucous Cell-Type Mucins. Journal of Biochemistry, 2003, 133, 453-460.	1.7	8
23	Immunohistochemical Localization in Rat Gastrointestinal Tract of a Sialomucin Species Recognized by HCM31, a New Anti-Mucin Monoclonal Antibody. Biomedical Research, 2002, 23, 63-68.	0.9	9
24	Inhibition ofHelicobacter pylorisialic acid-specific haemagglutination by human gastrointestinal mucins and milk glycoproteins. FEMS Immunology and Medical Microbiology, 1998, 20, 275-281.	2.7	50
25	Inhibition of Helicobacter pylori sialic acid-specific haemagglutination by human gastrointestinal mucins and milk glycoproteins. FEMS Immunology and Medical Microbiology, 1998, 20, 275-281.	2.7	7
26	Peripheral α-linked <i>N</i> -acetylglucosamine on the carbohydrate moiety of mucin derived from mammalian gastric gland mucous cells: epitope recognized by a newly characterized monoclonal antibody. Biochemical Journal, 1996, 318, 409-416.	3.7	143
27	Establishment of monoclonal antibodies against carbohydrate moiety of gastric mucins distributed in the different sites and layers of rat gastric mucosa. Glycoconjugate Journal, 1996, 13, 857-864.	2.7	42