
Dibyadeep Datta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4988348/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, 115-124.	0.8	169
2	Association of oxytocin receptor (OXTR) gene variants with multiple phenotype domains of autism spectrum disorder. Journal of Neurodevelopmental Disorders, 2011, 3, 101-112.	3.1	148
3	Synaptic Actin Dysregulation, a Convergent Mechanism of Mental Disorders?. Journal of Neuroscience, 2016, 36, 11411-11417.	3.6	99
4	Altered Expression of CDC42 Signaling Pathway Components in Cortical Layer 3 Pyramidal Cells in Schizophrenia. Biological Psychiatry, 2015, 78, 775-785.	1.3	81
5	Layer 3 Excitatory and Inhibitory Circuitry in the Prefrontal Cortex: Developmental Trajectories and Alterations in Schizophrenia. Biological Psychiatry, 2017, 81, 862-873.	1.3	78
6	Functional Maturation of GABA Synapses During Postnatal Development of the Monkey Dorsolateral Prefrontal Cortex. Cerebral Cortex, 2015, 25, 4076-4093.	2.9	61
7	Ageâ€related calcium dysregulation linked with tau pathology and impaired cognition in nonâ€human primates. Alzheimer's and Dementia, 2021, 17, 920-932.	0.8	55
8	Developmental Expression Patterns of GABA _A Receptor Subunits in Layer 3 and 5 Pyramidal Cells of Monkey Prefrontal Cortex. Cerebral Cortex, 2015, 25, 2295-2305.	2.9	52
9	Muscarinic M1 Receptors Modulate Working Memory Performance and Activity via KCNQ Potassium Channels in the Primate Prefrontal Cortex. Neuron, 2020, 106, 649-661.e4.	8.1	52
10	Flexible, Bowl-Shaped N-Heterocyclic Carbene Ligands: Substrate Specificity in Iridium-Catalyzed Ketone Hydrosilylation. Organometallics, 2009, 28, 465-472.	2.3	50
11	Alzheimer's-like pathology in aging rhesus macaques: Unique opportunity to study the etiology and treatment of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26230-26238.	7.1	46
12	Classical complement cascade initiating C1q protein within neurons in the aged rhesus macaque dorsolateral prefrontal cortex. Journal of Neuroinflammation, 2020, 17, 8.	7.2	42
13	Ultrastructural evidence for impaired mitochondrial fission in the aged rhesus monkey dorsolateral prefrontal cortex. Neurobiology of Aging, 2017, 51, 9-18.	3.1	41
14	Loss of Prefrontal Cortical Higher Cognition with Uncontrollable Stress: Molecular Mechanisms, Changes with Age, and Relevance to Treatment. Brain Sciences, 2019, 9, 113.	2.3	41
15	A novel dopamine D1 receptor agonist excites delay-dependent working memory-related neuronal firing in primate dorsolateral prefrontal cortex. Neuropharmacology, 2019, 150, 46-58.	4.1	41
16	The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex. Molecular Psychiatry, 2021, 26, 3684-3700.	7.9	41
17	Chronic Stress Weakens Connectivity in the Prefrontal Cortex: Architectural and Molecular Changes. Chronic Stress, 2021, 5, 247054702110292.	3.4	38
18	Altered Expression of ARP2/3 Complex Signaling Pathway Genes in Prefrontal Layer 3 Pyramidal Cells in Schizophrenia. American lournal of Psychiatry. 2017. 174. 163-171.	7.2	33

DIBYADEEP DATTA

#	Article	IF	CITATIONS
19	Translocator Protein 18ÂkDa (TSPO) Expression in Multiple Sclerosis Patients. Journal of Neurolmmune Pharmacology, 2013, 8, 51-57.	4.1	31
20	Studies of aging nonhuman primates illuminate the etiology of earlyâ€stage Alzheimer'sâ€like neuropathology: An evolutionary perspective. American Journal of Primatology, 2021, 83, e23254.	1.7	26
21	Unique Molecular Regulation of Higher-Order Prefrontal Cortical Circuits: Insights into the Neurobiology of Schizophrenia. ACS Chemical Neuroscience, 2018, 9, 2127-2145.	3.5	25
22	Noradrenergic α1-Adrenoceptor Actions in the Primate Dorsolateral Prefrontal Cortex. Journal of Neuroscience, 2019, 39, 2722-2734.	3.6	25
23	Inhibition of immune activation by a novel nuclear factor-kappa B inhibitor in HTLV-l–associated neurologic disease. Blood, 2011, 117, 3363-3369.	1.4	17
24	Reciprocal Alterations in Regulator of G Protein Signaling 4 and microRNA16 in Schizophrenia. Schizophrenia Bulletin, 2016, 42, 396-405.	4.3	17
25	Unusual Molecular Regulation of Dorsolateral Prefrontal Cortex Layer III Synapses Increases Vulnerability to Genetic and Environmental Insults in Schizophrenia. Biological Psychiatry, 2022, 92, 480-490.	1.3	15
26	Mapping Phosphodiesterase 4D (PDE4D) in Macaque Dorsolateral Prefrontal Cortex: Postsynaptic Compartmentalization in Layer III Pyramidal Cell Circuits. Frontiers in Neuroanatomy, 2020, 14, 578483.	1.7	14
27	Glutamate Carboxypeptidase II in Aging Rat Prefrontal Cortex Impairs Working Memory Performance. Frontiers in Aging Neuroscience, 2021, 13, 760270.	3.4	12
28	Phosphodiesterase PDE4D Is Decreased in Frontal Cortex of Aged Rats and Positively Correlated With Working Memory Performance and Inversely Correlated With PKA Phosphorylation of Tau. Frontiers in Aging Neuroscience, 2020, 12, 576723.	3.4	8
29	Glutamate Metabotropic Receptor Type 3 (mGlu3) Localization in the Rat Prelimbic Medial Prefrontal Cortex. Frontiers in Neuroanatomy, 2022, 16, 849937.	1.7	8
30	Laminar Differences in the Targeting of Dendritic Spines by Cortical Pyramidal Neurons and Interneurons in Human Dorsolateral Prefrontal Cortex. Neuroscience, 2021, 452, 181-191.	2.3	5
31	M1 receptors interacting with NMDAR enhance delay-related neuronal firing and improve working memory performance. Current Research in Neurobiology, 2021, 2, 100016.	2.3	5
32	Simple, Single-Shot Phosphoproteomic Analysis of Heat-Stable Tau Identifies Age-Related Changes in pS235- and pS396-Tau Levels in Non-human Primates. Frontiers in Aging Neuroscience, 2021, 13, 767322.	3.4	4
33	The importance of diversity and outreach in geroscience research: Insights from the Annual Biomedical Research Conference for Minority Students. GeroScience, 2020, 42, 1005-1012.	4.6	2
34	APP Modulates Aβ-Induced Activation of Microglia in Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2017, 37, 238-240.	3.6	1
35	PDE4D And HCN1 Ultrastructure In Rhesus Macaque Entorhinal Cortex: Relevance For Aging And Alzheimer's Disease. Innovation in Aging, 2021, 5, 635-636.	0.1	1