Vicente Castelo Branco Leitune

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4988282/publications.pdf

Version: 2024-02-01

257450 377865 129 1,891 24 34 citations g-index h-index papers 131 131 131 1738 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The addition of nanostructured hydroxyapatite to an experimental adhesive resin. Journal of Dentistry, 2013, 41, 321-327.	4.1	93
2	Effect of silver nanoparticles on the physicochemical and antimicrobial properties of an orthodontic adhesive. Journal of Applied Oral Science, 2016, 24, 404-410.	1.8	66
3	Niobium pentoxide as a novel filler for dental adhesive resin. Journal of Dentistry, 2013, 41, 106-113.	4.1	65
4	Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin. Journal of Dentistry, 2018, 73, 57-60.	4.1	54
5	The influence of methodological variables on the pushâ€out resistance to dislodgement of root filling materials: a metaâ€regression analysis. International Endodontic Journal, 2016, 49, 836-849.	5.0	49
6	Nanostructured hydroxyapatite as filler for methacrylateâ€based root canal sealers. International Endodontic Journal, 2012, 45, 63-67.	5.0	45
7	Influence of Eugenol-based Sealers on Push-out Bond Strength of Fiber Post Luted with Resin Cement: Systematic Review and Meta-analysis. Journal of Endodontics, 2015, 41, 1418-1423.	3.1	39
8	Ionic liquid as antibacterial agent for an experimental orthodontic adhesive. Dental Materials, 2019, 35, 1155-1165.	3.5	39
9	Quantum Dots as Nonagglomerated Nanofillers for Adhesive Resins. Journal of Dental Research, 2016, 95, 1401-1407.	5.2	38
10	Oral research in the world today. Brazilian Oral Research, 2013, 27, 453-454.	1.4	36
11	Boron nitride nanotubes as novel fillers for improving the properties of dental adhesives. Journal of Dentistry, 2017, 62, 85-90.	4.1	36
12	Polymerisation, antibacterial and bioactivity properties of experimental orthodontic adhesives containing triclosan-loaded halloysite nanotubes. Journal of Dentistry, 2018, 69, 77-82.	4.1	35
13	Triclosan-loaded chitosan as antibacterial agent for adhesive resin. Journal of Dentistry, 2019, 83, 33-39.	4.1	35
14	Influence of chlorhexidine application at longitudinal push-out bond strength of fiber posts. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2010, 110, e77-e81.	1.4	34
15	<i>ln vitro</i> evaluation of visible light-activated titanium dioxide photocatalysis for in-office dental bleaching. Dental Materials Journal, 2019, 38, 68-74.	1.8	34
16	Influence of hydroxyethyl acrylamide addition to dental adhesive resin. Dental Materials, 2015, 31, 1579-1586.	3.5	33
17	Influence of Endodontic Irrigants on Resin Sealer Bond Strength to Radicular Dentin. Bulletin of Tokyo Dental College, The, 2012, 53, 1-7.	0.5	32
18	Niobium pentoxide as a new filler for methacrylateâ€based root canal sealers. International Endodontic Journal, 2013, 46, 205-210.	5.0	30

#	Article	IF	CITATIONS
19	The effect of antimicrobial agents on bond strength of orthodontic adhesives: a metaâ€analysis of <i>inÂvitro</i> studies. Orthodontics and Craniofacial Research, 2016, 19, 1-9.	2.8	30
20	Niobium pentoxide phosphate invert glass as a mineralizing agent in an experimental orthodontic adhesive. Angle Orthodontist, 2017, 87, 759-765.	2.4	29
21	Chlorhexidine application in adhesive procedures: a meta-regression analysis. Journal of Adhesive Dentistry, 2013, 15, 11-8.	0.5	28
22	Influence of chlorhexidine application on longitudinal adhesive bond strength in deciduous teeth. Brazilian Oral Research, 2011, 25, 388-392.	1.4	27
23	Physicochemical and bioactive properties of innovative resin-based materials containing functional halloysite-nanotubes fillers. Dental Materials, 2016, 32, 1133-1143.	3.5	27
24	Influence of radiopaque fillers on physicochemical properties of a model epoxy resin-based root canal sealer. Journal of Applied Oral Science, 2013, 21, 533-539.	1.8	25
25	Antimicrobial effect and physicochemical properties of an adhesive system containing nanocapsules. Dental Materials, 2017, 33, 735-742.	3.5	25
26	In vitro antibacterial and remineralizing effect of adhesive containing triazine and niobium pentoxide phosphate inverted glass. Clinical Oral Investigations, 2017, 21, 93-103.	3.0	24
27	CAD/CAM or conventional ceramic materials restorations longevity: a systematic review and meta-analysis. Journal of Prosthodontic Research, 2019, 63, 389-395.	2.8	24
28	Niobium containing bioactive glasses as remineralizing filler for adhesive resins. Dental Materials, 2020, 36, 221-228.	3.5	24
29	Influence of niobium pentoxide addition on the properties of glass ionomer cements. Acta Biomaterialia Odontologica Scandinavica, 2016, 2, 138-143.	4.0	23
30	Quaternary ammonium compound as antimicrobial agent in resin-based sealants. Clinical Oral Investigations, 2020, 24, 777-784.	3.0	23
31	The influence of a learning object with virtual simulation for dentistry: A randomized controlled trial. International Journal of Medical Informatics, 2016, 85, 68-75.	3.3	22
32	Antibacterial and Remineralizing Fillers in Experimental Orthodontic Adhesives. Materials, 2019, 12, 652.	2.9	22
33	Influence of Different Calcium Phosphates on an Experimental Adhesive Resin. Journal of Adhesive Dentistry, 2017, 19, 379-384.	0.5	21
34	Long-term stability of dental adhesive incorporated by boron nitride nanotubes. Dental Materials, 2018, 34, 427-433.	3.5	20
35	Halloysite nanotubes loaded with alkyl trimethyl ammonium bromide as antibacterial agent for root canal sealers. Dental Materials, 2019, 35, 789-796.	3.5	20
36	Effect of nanostructured zirconium dioxide incorporation in an experimental adhesive resin. Clinical Oral Investigations, 2018, 22, 2209-2218.	3.0	19

#	Article	IF	CITATIONS
37	Tantalum oxide as filler for dental adhesive resin. Dental Materials Journal, 2018, 37, 897-903.	1.8	19
38	Bone healing with niobium-containing bioactive glass composition in rat femur model: A micro-CT study. Dental Materials, 2019, 35, 1490-1497.	3.5	19
39	Evaluation of an antibacterial orthodontic adhesive incorporated with niobium-based bioglass: an in situ study. Brazilian Oral Research, 2019, 33, e010.	1.4	19
40	Synthesis of sol–gel derived calcium silicate particles and development of a bioactive endodontic cement. Dental Materials, 2020, 36, 135-144.	3.5	19
41	Glycerol salicylateâ€based containing αâ€tricalcium phosphate as a bioactive root canal sealer. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1663-1669.	3.4	18
42	Orthodontic bracket bonding without previous adhesive priming: A meta-regression analysis. Angle Orthodontist, 2016, 86, 391-398.	2.4	18
43	Acrylamides and methacrylamides as alternative monomers for dental adhesives. Dental Materials, 2018, 34, 1634-1644.	3.5	18
44	Effect of over-the-counter fluoridated products regimens on root caries inhibition. Archives of Oral Biology, 2015, 60, 1588-1594.	1.8	17
45	Triazine Compound as Copolymerized Antibacterial Agent in Adhesive Resins. Brazilian Dental Journal, 2017, 28, 196-200.	1.1	17
46	Antimicrobial and anti-inflammatory drug-delivery systems at endodontic reparative material: Synthesis and characterization. Dental Materials, 2019, 35, 457-467.	3.5	17
47	Titanium dioxide nanotubes with triazine-methacrylate monomer to improve physicochemical and biological properties of adhesives. Dental Materials, 2021, 37, 223-235.	3. 5	17
48	Niobium addition to sol-gel derived bioactive glass powders and scaffolds: In vitro characterization and effect on pre-osteoblastic cell behavior. Dental Materials, 2018, 34, 1449-1458.	3.5	16
49	Niobium silicate particles as bioactive fillers for composite resins. Dental Materials, 2020, 36, 1578-1585.	3.5	16
50	Polybutylene-adipate-terephthalate and niobium-containing bioactive glasses composites: Development of barrier membranes with adjusted properties for guided bone regeneration. Materials Science and Engineering C, 2021, 125, 112115.	7.3	16
51	Influence of delayed pouring on irreversible hydrocolloid properties. Brazilian Oral Research, 2012, 26, 404-409.	1.4	15
52	Mineral deposition at dental adhesive resin containing niobium pentoxide. Applied Adhesion Science, 2014, 2, .	1.5	15
53	One-year aging effects on microtensile bond strengths of composite and repairs with different surface treatments. Brazilian Oral Research, 2017, 31, e4.	1.4	15
54	Methacrylateâ€based root canal sealer containing chlorexidine and αâ€tricalcium phosphate. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1439-1443.	3.4	15

#	Article	IF	CITATIONS
55	Influence of the addition of microsphere load amoxicillin in the physical, chemical and biological properties of an experimental endodontic sealer. Journal of Dentistry, 2018, 68, 28-33.	4.1	15
56	Boron Nitride Nanotubes as Filler for Resin-Based Dental Sealants. Scientific Reports, 2019, 9, 7710.	3.3	15
57	Guanidine derivative inhibits C. albicans biofilm growth on denture liner without promote loss of materials' resistance. Bioactive Materials, 2020, 5, 228-232.	15.6	15
58	Myristyltrimethylammonium Bromide (MYTAB) as a Cationic Surface Agent to Inhibit Streptococcus mutans Grown over Dental Resins: An In Vitro Study. Journal of Functional Biomaterials, 2020, 11, 9.	4.4	15
59	Effect of indomethacin-loaded nanocapsules incorporation in a dentin adhesive resin. Clinical Oral Investigations, 2017, 21, 437-446.	3.0	13
60	Zinc-based particle with ionic liquid as a hybrid filler for dental adhesive resin. Journal of Dentistry, 2020, 102, 103477.	4.1	13
61	Cerium Dioxide Particles to Tune Radiopacity of Dental Adhesives: Microstructural and Physico-Chemical Evaluation. Journal of Functional Biomaterials, 2020, 11, 7.	4.4	13
62	Ionic liquid-loaded microcapsules doped into dental resin infiltrants. Bioactive Materials, 2021, 6, 2667-2675.	15.6	13
63	Antibacterial, chemical and physical properties of sealants with polyhexamethylene guanidine hydrochloride. Brazilian Oral Research, 2019, 33, e019.	1.4	12
64	Interface evaluation of experimental dental adhesives with nanostructured hydroxyapatite incorporation. Applied Adhesion Science, $2014, 2, \ldots$	1.5	11
65	Wollastonite as filler of an experimental dental adhesive. Journal of Dentistry, 2020, 102, 103472.	4.1	11
66	Dental Sealant Empowered by 1,3,5-Tri Acryloyl Hexahydro-1,3,5-Triazine and \hat{l}_{\pm} -Tricalcium Phosphate for Anti-Caries Application. Polymers, 2020, 12, 895.	4.5	11
67	Effect on adhesion of a nanocapsules-loaded adhesive system. Brazilian Oral Research, 2018, 32, e008.	1.4	10
68	Exploring Needle-Like Zinc Oxide Nanostructures for Improving Dental Resin Sealers: Design and Evaluation of Antibacterial, Physical and Chemical Properties. Polymers, 2020, 12, 789.	4.5	10
69	Does use of silane-containing universal adhesive eliminate the need for silane application in direct composite repair?. Brazilian Oral Research, 2020, 34, e045.	1.4	10
70	Synthesis and characterization of a glycerol salicylate resin for bioactive root canal sealers. International Endodontic Journal, 2014, 47, 339-345.	5.0	9
71	Influence of addition of [2-(methacryloyloxy)ethyl]trimethylammonium chloride to an experimental adhesive. Brazilian Oral Research, 2017, 31, e31.	1.4	9
72	Physical and mechanical properties of dual functional cements—an in vitro study. Clinical Oral Investigations, 2019, 23, 1715-1721.	3.0	9

#	Article	IF	Citations
73	Niobium silicate particles promote in vitro mineral deposition on dental adhesive resins. Journal of Dentistry, 2020, 101, 103449.	4.1	9
74	Guanidine hydrochloride polymer additive to undertake ultraconservative resin infiltrant against Streptococcus mutans. European Polymer Journal, 2020, 133, 109746.	5.4	9
75	Anti-inflammatory effect of an adhesive resin containing indomethacin-loaded nanocapsules. Archives of Oral Biology, 2017, 84, 106-111.	1.8	8
76	Physical-mechanical properties of Bis-EMA based root canal sealer with different fillers addition. Journal of Conservative Dentistry, 2015, 18, 227.	0.9	8
77	Influence of an iodonium salt on the properties of dual-polymerizing self-adhesive resin cements. Journal of Prosthetic Dentistry, 2017, 118, 228-234.	2.8	7
78	3D printing of poly(butylene adipateâ€coâ€terephthalate) (PBAT)/niobium containing bioactive glasses (BAGNb) scaffolds: Characterization of composites, in vitro bioactivity, and in vivo bone repair. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 267-278.	2.7	7
79	In Vitro Bonding Performance of Modern Self-Adhesive Resin Cements and Conventional Resin-Modified Glass Ionomer Cements to Prosthetic Substrates. Applied Sciences (Switzerland), 2020, 10, 8157.	2.5	6
80	Microshear bond strength of dual-cure resin cement in zirconia after different cleaning techniques: an <i>in vitro</i> study. Journal of Advanced Prosthodontics, 2021, 13, 237.	2.6	6
81	Determining the Effects of Eugenol on the Bond Strength of Resin-Based Restorative Materials to Dentin: A Meta-Analysis of the Literature. Applied Sciences (Switzerland), 2020, 10, 1070.	2.5	6
82	Chemical, Mechanical and Biological Properties of an Adhesive Resin with Alkyl Trimethyl Ammonium Bromide-loaded Halloysite Nanotubes. Journal of Adhesive Dentistry, 2020, 22, 399-407.	0.5	6
83	Long-term bond strength, degree of conversion and resistance to degradation of a HEMA-free model adhesive. Brazilian Journal of Oral Sciences, 2014, 13, 261-265.	0.1	5
84	Influence of N-(2-hydroxyethyl)acrylamide addition in light- and dual-cured resin cements. Journal of Dentistry, 2019, 90, 103208.	4.1	5
85	Adhesive system with alpha-tricalcium phosphate addition for mineral deposition on caries-affected dentin. International Journal of Adhesion and Adhesives, 2021, 105, 102790.	2.9	5
86	Nanoneedle-like zinc oxide as a filler particle for an experimental adhesive resin. Indian Journal of Dental Research, 2019, 30, 777.	0.4	5
87	Evaluation of the Physicochemical and Antibacterial Properties of Experimental Adhesives Doped with Lithium Niobate. Polymers, 2020, 12, 1330.	4.5	4
88	Niobium silicate as a filler for an experimental photopolymerizable luting agent. Journal of Prosthodontic Research, 2021, 65, 25-30.	2.8	4
89	Thermocompaction decreases long-term push-out bond strength of methacrylate-based sealers. Acta Odontologica Scandinavica, 2015, 73, 292-297.	1.6	3
90	Effect of disinfection techniques on physical-mechanical properties of a microwave-activated acrylic resin. Polimeros, 2018, 28, 215-219.	0.7	3

#	Article	IF	Citations
91	Calcium phosphates as fillers for methacrylate-based sealer. Clinical Oral Investigations, 2019, 23, 4417-4423.	3.0	3
92	Physicochemical Effects of Niobic Acid Addition Into Dental Adhesives. Frontiers in Materials, 2021, 7, .	2.4	3
93	Effect of immersion in various disinfectant solutions on the properties of a heat-cured acrylic resin. Rgo, 0, 67, .	0.2	3
94	Mineral deposition promoted by resin-based sealants with different calcium phosphate additions. Brazilian Oral Research, 2019, 33, e101.	1.4	3
95	Influence of mouthwashes on the physical properties of orthodontic acrylic resin. Brazilian Journal of Oral Sciences, 2014, 13, 203-208.	0.1	2
96	Glycerol Salicylate-based Pulp-Capping Material Containing Portland Cement. Brazilian Dental Journal, 2015, 26, 357-362.	1.1	2
97	Acrylic resin disinfection by peracetic acid and microwave energy. Rgo, 2015, 63, 315-318.	0.2	2
98	Bismuth subsalicylate as filler particle for an experimental epoxy-based root canal sealer. Brazilian Journal of Oral Sciences, 2013, 12, 173-177.	0.1	2
99	Incorporation of amoxicillin-loaded microspheres in mineral trioxide aggregate cement: an in vitro study. Restorative Dentistry & Endodontics, 2020, 45, e50.	1.5	2
100	Pigment effect on the long term elasticity of elastomeric ligatures. Dental Press Journal of Orthodontics, 2012, 17, e1-e6.	0.9	2
101	1,3,5-triacryloylhexahydro-1,3,5-triazine improves antibacterial and physicochemical properties of an experimental resin-based cement. International Journal of Adhesion and Adhesives, 2022, 117, 103157.	2.9	2
102	Effect of light sources on nanohardness, elastic modulus and water sorption of a composite resin. Polimeros, 2011, 21, 103-106.	0.7	1
103	Influence of Octacalcium Phosphate addition on physical-mechanical properties of Glass Ionomer Cement. Revista Odonto Ciencia, 2017, 32, 127.	0.0	1
104	Thermal radical polymerization of Bis(methacrylamide)s. Polimeros, 2019, 29, .	0.7	1
105	Biological Properties of Experimental Methacrylate-Based Sealers Containing Calcium Phosphates. Brazilian Dental Journal, 2021, 32, 59-66.	1.1	1
106	A influência do tamanho de partÃeula na reação de presa de cimentos de silicate de cálcio produzidos por sol-gel. Faculdade De Odontologia De Porto Alegre Revista, 2021, 62, 63-70.	0.1	1
107	Physicochemical and biological evaluation of a triazine-methacrylate monomer into a dental resin. Journal of Dentistry, 2021, 114, 103818.	4.1	1
108	Surface and mechanical properties of adhesives with calcium phosphates challenged to different storage media. Brazilian Journal of Oral Sciences, 0, 19, e200181.	0.1	1

#	Article	IF	CITATIONS
109	Influence of peracetic acid at acrylic resin properties. Revista Odonto Ciencia, 2012, 27, 238-241.	0.0	1
110	Non-thermal plasma for surface treatment of inorganic fillers added to resin-based cements. Clinical Oral Investigations, 2022, 26, 2983-2991.	3.0	1
111	Physicochemical and biological properties of experimental dental adhesives doped with a guanidine-based polymer: an in vitro study. Clinical Oral Investigations, 2022, 26, 3627.	3.0	1
112	Impact of economic factors and knowledge translation on public procurement for dental adhesive systems. Brazilian Oral Research, 2022, 36, e020.	1.4	1
113	Assessment of Enamel Bond Strength of Hypoplastic Primary Teeth. Pediatric Dentistry (discontinued), 2016, 38, 432-436.	0.4	1
114	Influence of addition of 2-[3-(2H-benzotriazol-2-YL)- 4-hydroxyphenyl] ethyl methacrylate to an experimental adhesive system. Acta Odontol \tilde{A}^3 gica Latinoamericana: AOL, 2015, 28, 72-8.	0.4	1
115	Influence of hydroxyapatite addition on experimental methacrylate-based root canal sealers. Dental Materials, 2011, 27, e45-e46.	3.5	O
116	Influence of dye and nylon fibers on microwave-cured acrylic resin properties. Rgo, 2017, 65, 8-12.	0.2	0
117	Bismuth subcarbonate as filler particle for an epoxy-based root canal sealer. Polimeros, 2013, 23, 743-747.	0.7	O
118	Pol $ ilde{A}$ mero de MMA para base de dentadura com a adi $ ilde{A}$ $ ilde{S}$ $ ilde{A}$ $ ilde{E}$ 0 de subnitrato de bismuto. Revista Da Faculdade De Odontologia (Universidade De Passo Fundo), 2014, 19, .	0.2	0
119	Swelling of self-adhesive resin cement increases long-term push-out bond strength of fiber post to dentin. Brazilian Journal of Oral Sciences, 2015, 14, 246-250.	0.1	0
120	Developing and assessing a virtual learning object with virtual simulation on zinc phosphate cement. Revista Da ABENO, 2016, 15, 43-51.	0.1	0
121	Influence of adhesive system on quartz fiber post dislocation resistance in endodontically treated teeth. Brazilian Journal of Oral Sciences, 2016, 15, 62.	0.1	O
122	Influence of polymerization cycle in properties of acrylic resin polymerized by microwave energy. Revista Odonto Ciencia, 2016, 31, 105.	0.0	0
123	Effect of beverages on surface properties of resin-based sealants. Brazilian Journal of Oral Sciences, 0, 16, 1-7.	0.1	O
124	Avalia \tilde{A} § \tilde{A} £o in vitro da microdureza de resinas bulk fill ap \tilde{A} 3s seis meses de armazenamento em \tilde{A}_i gua. Journal of Clinical Dentistry and Research, 2018, 15, 38-46.	0.0	0
125	Estratégias adesivas para prevenção da degradação da interface adesivo/dentina: revisão de literatura. Journal of Clinical Dentistry and Research, 2018, 15, 154-167.	0.0	O
126	Salicilato de metila e \tilde{A}^3 leo de silicone como plastificantes alternativos para cimentos \tilde{A} base de resina de salicilato. Faculdade De Odontologia De Porto Alegre Revista, 2018, 59, 15-18.	0.1	0

#	Article	IF	CITATIONS
127	Influência do pré-condicionamento ácido em dentina na resistência de união imediata de sistemas adesivos autocondicionantes de dois passos. Faculdade De Odontologia De Porto Alegre Revista, 2018, 59, 30-33.	0.1	O
128	Development of resin-based bioactive endodontic cements with glycerol salicylate and calcium silicate. Faculdade De Odontologia De Porto Alegre Revista, 2020, 61, 69-76.	0.1	0
129	Implementation in restorative treatments in public health: a 10-year analysis of resin composite procurement in Brazil. Cadernos De Saude Publica, 2022, 38, e00118321.	1.0	O