
Xiao-Feng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4987471/publications.pdf Version: 2024-02-01

XIAO-FENC WANC

#	Article	IF	CITATIONS
1	Low-temperature SnO ₂ -based electron selective contact for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 10837-10844.	10.3	324
2	Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 2021, 4, 943-950.	23.7	137
3	Prussian Blue analogue derived porous NiFe2O4 nanocubes for low-concentration acetone sensing at low working temperature. Chemical Engineering Journal, 2018, 338, 504-512.	12.7	116
4	CO2 sensing properties and mechanism of nanocrystalline LaFeO3 sensor. Sensors and Actuators B: Chemical, 2013, 188, 965-971.	7.8	112
5	Triple-shelled ZnO/ZnFe2O4 heterojunctional hollow microspheres derived from Prussian Blue analogue as high-performance acetone sensors. Sensors and Actuators B: Chemical, 2018, 256, 374-382.	7.8	96
6	Sensing Mechanism of SnO ₂ (110) Surface to CO: Density Functional Theory Calculations. Journal of Physical Chemistry C, 2014, 118, 28548-28561.	3.1	94
7	Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber. Journal of Materials Chemistry A, 2017, 5, 13439-13447.	10.3	86
8	Acetone sensing properties and mechanism of nano-LaFeO3 thick-films. Sensors and Actuators B: Chemical, 2016, 235, 56-66.	7.8	77
9	Magnesiumâ€doped Zinc Oxide as Electron Selective Contact Layers for Efficient Perovskite Solar Cells. ChemSusChem, 2016, 9, 2640-2647.	6.8	74
10	Efficient and Environmentally Stable Perovskite Solar Cells Based on ZnO Electron Collection Layer. Chemistry Letters, 2015, 44, 610-612.	1.3	72
11	HC(NH ₂) ₂ PbI ₃ as a thermally stable absorber for efficient ZnO-based perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 8435-8443.	10.3	72
12	MOFs-derived porous nanomaterials for gas sensing. Polyhedron, 2018, 152, 155-163.	2.2	67
13	Controlled Deposition and Performance Optimization of Perovskite Solar Cells Using Ultrasonic Sprayâ€Coating of Photoactive Layers. ChemSusChem, 2017, 10, 1405-1412.	6.8	62
14	Dopantâ€Free Zinc Chlorophyll Aggregates as an Efficient Biocompatible Hole Transporter for Perovskite Solar Cells. ChemSusChem, 2016, 9, 2862-2869.	6.8	58
15	Ti3C2T /PEDOT:PSS hybrid materials for room-temperature methanol sensor. Chinese Chemical Letters, 2020, 31, 1018-1021.	9.0	57
16	Hollow NiFe ₂ O ₄ microspindles derived from Ni/Fe bimetallic MOFs for highly sensitive acetone sensing at low operating temperatures. Inorganic Chemistry Frontiers, 2018, 5, 1107-1114.	6.0	55
17	Concave ZnFe ₂ O ₄ Hollow Octahedral Nanocages Derived from Fe-Doped MOF-5 for High-Performance Acetone Sensing at Low-Energy Consumption. Inorganic Chemistry, 2017, 56, 13646-13650.	4.0	46
18	Boosting Hydrogen Evolution Electrocatalysis via Regulating the Electronic Structure in a Crystalline–Amorphous CoP/CeO _{<i>x</i>} p–n Heterojunction. ACS Applied Materials & Interfaces, 2022, 14, 33151-33160.	8.0	41

XIAO-FENG WANG

#	Article	IF	CITATIONS
19	The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO2/Zeolite Sensor. Sensors, 2018, 18, 390.	3.8	25
20	Hollow NiFe ₂ O ₄ hexagonal biyramids for high-performance <i>n</i> -propanol sensing at low temperature. New Journal of Chemistry, 2018, 42, 14071-14074.	2.8	25
21	LnFeO3 (Ln La, Nd, Sm) derived from bimetallic organic frameworks for gas sensor. Journal of Alloys and Compounds, 2022, 902, 163803.	5.5	23
22	Annealing temperature-dependent porous ZnFe2O4 olives derived from bimetallic organic frameworks for high-performance ethanol gas sensing. Materials Chemistry and Physics, 2020, 241, 122379.	4.0	21
23	Hollow CoP Encapsulated in an N-Doped Carbon Nanocage as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Nano Materials, 2021, 4, 13450-13458.	5.0	20
24	Boosting the oxygen evolution electrocatalysis of high-entropy hydroxides by high-valence nickel species regulation. Chemical Communications, 2022, 58, 7682-7685.	4.1	20
25	Porous Javelinâ€Like NiFe ₂ O ₄ Nanorods as nâ€Propanol Sensor with Ultrahighâ€Performance. ChemistrySelect, 2018, 3, 12871-12877.	1.5	19
26	Chlorophyllâ€Based Organic–Inorganic Heterojunction Solar Cells. Chemistry - A European Journal, 2017, 23, 10886-10892.	3.3	17
27	Interface Engineering and Phase Regulation in CoP/CePO ₄ Heterostuctures for Boosting Oxygen Evolution Electrocatalysis. Energy & Fuels, 2021, 35, 16760-16767.	5.1	11
28	A theoretical insight into CO2 sensing performance on the orthorhombic LaMnO3 (0 1 0) surface. Chemical Physics Letters, 2017, 687, 138-142.	2.6	8
29	Gas-sensing properties of composites of Y-zeolite and SnO2. Journal of Materials Science, 2018, 53, 6729-6740.	3.7	8
30	Interface Engineering in CoP/CePO ₄ Derived from a Prussian Blue Analogue as a Highly Efficient Electrocatalyst for Alkaline Hydrogen Evolution Reaction. ChemElectroChem, 2021, 8, 3762-3766.	3.4	5
31	Hierarchical particle-on-sheet CoP fabricated by direct phosphorization of Co(OH)2/ZIF-67 hybrid for boosting hydrogen evolution electrocatalysis. Inorganic Chemistry Communication, 2021, 134, 109058.	3.9	5
32	Preparation of a promising whole cell biocatalyst of <i>Geotrichum</i> sp. lipase and its properties. Journal of Chemical Technology and Biotechnology, 2012, 87, 498-504.	3.2	4
33	Interface engineering in the α-Co(OH) ₂ /ZIF-67 heterostructure for enhanced oxygen evolution electrocatalysis. New Journal of Chemistry, 2021, 45, 10199-10203.	2.8	4
34	Renormalization of the Mott gap by lattice entropy: The case of 1T- TaS2. Physical Review Research, 2020, 2, .	3.6	4
35	Surface Structure Engineering of Nanosheet-Assembled NiFe2O4 Fluffy Flowers for Gas Sensing. Nanomaterials, 2021, 11, 297.	4.1	3
36	In Situ Growth and Electrochemical Activation of Copper-Based Nickel–Cobalt Hydroxide for High-Performance Energy Storage Devices. ACS Applied Energy Materials, 2021, 4, 9460-9469.	5.1	2

#	Article	IF	CITATIONS
37	An Feâ€MIL100 Based Drug Delivery System for pH and Glutathione Dualâ€Responsive Drug Release. ChemistrySelect, 2021, 6, 12295-12299.	1.5	1
38	Plant polyphenol-involved coordination assembly-derived Mo ₃ Co ₃ C/Mo ₂ C/Co@NC with phase regulation and interface engineering for efficient hydrogen evolution reaction electrocatalysis. New Journal of Chemistry, 0, ,	2.8	1

•