Francine C Acher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4987446/publications.pdf

Version: 2024-02-01

57 3,326 29 56 papers citations h-index g-index

58 58 58 58 2910

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Metabotropic glutamate receptor orthosteric ligands and their binding sites. Neuropharmacology, 2022, 204, 108886.	2.0	9
2	A nanobody activating metabotropic glutamate receptor 4 discriminates between homo- and heterodimers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
3	Metabotropic glutamate receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	O
4	Antidepressant efficacy of a selective organic cation transporter blocker in a mouse model of depression. Molecular Psychiatry, 2020, 25, 1245-1259.	4.1	24
5	Illuminating the allosteric modulation of the calcium-sensing receptor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21711-21722.	3.3	37
6	Amino Acids Bearing Aromatic or Heteroaromatic Substituents as a New Class of Ligands for the Lysosomal Sialic Acid Transporter Sialin. Journal of Medicinal Chemistry, 2020, 63, 8231-8249.	2.9	11
7	Asc-1 Transporter (SLC7A10): Homology Models And Molecular Dynamics Insights Into The First Steps Of The Transport Mechanism. Scientific Reports, 2020, 10, 3731.	1.6	12
8	LSP2-9166, an orthosteric mGlu4 and mGlu7 receptor agonist, reduces cocaine self-administration under a progressive ratio schedule in rats. Neuroscience Letters, 2020, 764, 135603.	1.0	4
9	The mGlu7 receptor provides protective effects against epileptogenesis and epileptic seizures. Neurobiology of Disease, 2019, 129, 13-28.	2.1	18
10	Infiltrating Myeloid Cells Drive Osteosarcoma Progression via GRM4 Regulation of IL23. Cancer Discovery, 2019, 9, 1511-1519.	7.7	26
11	Conformational pathway provides unique sensitivity to a synaptic mGluR. Nature Communications, 2019, 10, 5572.	5.8	43
12	Metabotropic glutamate receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	1
13	Increased Potency and Selectivity for Group III Metabotropic Glutamate Receptor Agonists Binding at Dual sites. Journal of Medicinal Chemistry, 2018, 61, 1969-1989.	2.9	26
14	Mutual activation of glutamatergic mGlu4 and muscarinic M4 receptors reverses schizophrenia-related changes in rodents. Psychopharmacology, 2018, 235, 2897-2913.	1.5	20
15	Chloride ions stabilize the glutamate-induced active state of the metabotropic glutamate receptor 3. Neuropharmacology, 2018, 140, 275-286.	2.0	26
16	Profiling of orthosteric and allosteric group-III metabotropic glutamate receptor ligands on various G protein-coupled receptors with Tag-liteA® assays. Neuropharmacology, 2018, 140, 233-245.	2.0	6
17	Neurochemical and behavioral studies on the 5-HT 1A -dependent antipsychotic action of the mGlu 4 receptor agonist LSP4-2022. Neuropharmacology, 2017, 115, 149-165.	2.0	22
18	Involvement of GABA _B Receptor Signaling in Antipsychotic-like Action of the Novel Orthosteric Agonist of the mGlu ₄ Receptor, LSP4-2022. Current Neuropharmacology, 2016, 14, 413-426.	1.4	25

#	Article	IF	Citations
19	Allosteric modulation of metabotropic glutamate receptors by chloride ions. FASEB Journal, 2015, 29, 4174-4188.	0.2	37
20	A novel mGlu4 selective agonist LSP4-2022 increases behavioral despair in mouse models of antidepressant action. Neuropharmacology, 2015, 97, 338-345.	2.0	26
21	Therapeutic potential of group III metabotropic glutamate receptor ligands in pain. Current Opinion in Pharmacology, 2015, 20, 64-72.	1.7	19
22	Determination of the absolute configuration of phosphinic analogues of glutamate. Organic and Biomolecular Chemistry, 2015, 13, 1106-1112.	1.5	6
23	Identification of Positive Allosteric Modulators VU0155094 (ML397) and VU0422288 (ML396) Reveals New Insights into the Biology of Metabotropic Glutamate Receptor 7. ACS Chemical Neuroscience, 2014, 5, 1221-1237.	1.7	53
24	Qualification of LSP1-2111 as a Brain Penetrant Group III Metabotropic Glutamate Receptor Orthosteric Agonist. ACS Medicinal Chemistry Letters, 2014, 5, 119-123.	1.3	22
25	The antipsychotic-like effects of the mGlu group III orthosteric agonist, LSP1-2111, involves 5-HT1A signalling. Psychopharmacology, 2013, 227, 711-725.	1.5	29
26	Role of mGluR4 in acquisition of fear learning and memory. Neuropharmacology, 2013, 66, 365-372.	2.0	33
27	Alleviating Pain Hypersensitivity through Activation of Type 4 Metabotropic Glutamate Receptor. Journal of Neuroscience, 2013, 33, 18951-18965.	1.7	52
28	Successful Prediction of Substrate-binding Pocket in SLC17 Transporter Sialin. Journal of Biological Chemistry, 2012, 287, 11489-11497.	1.6	11
29	A novel selective metabotropic glutamate receptor 4 agonist reveals new possibilities for developing subtype selective ligands with therapeutic potential. FASEB Journal, 2012, 26, 1682-1693.	0.2	85
30	Opposing efficacy of group III mGlu receptor activators, LSP1-2111 and AMN082, in animal models of positive symptoms of schizophrenia. Psychopharmacology, 2012, 220, 481-494.	1.5	58
31	A critical pocket close to the glutamate binding site of mGlu receptors opens new possibilities for agonist design. Neuropharmacology, 2011, 60, 102-107.	2.0	25
32	Activation of Metabotropic Glutamate 4 Receptors Decreases L-DOPA-Induced Dyskinesia in a Mouse Model of Parkinson's Disease. Journal of Parkinson's Disease, 2011, 1, 339-346.	1.5	23
33	Rose Bengal analogs and vesicular glutamate transporters (VGLUTs). Bioorganic and Medicinal Chemistry, 2010, 18, 6922-6933.	1.4	26
34	A Virtual Screening Hit Reveals New Possibilities for Developing Group III Metabotropic Glutamate Receptor Agonists. Journal of Medicinal Chemistry, 2010, 53, 2797-2813.	2.9	66
35	Metabotropic glutamate receptor 4 novel agonist LSP1-2111 with anxiolytic, but not antidepressant-like activity, mediated by serotonergic and GABAergic systems. Neuropharmacology, 2010, 59, 627-634.	2.0	53
36	Electrophysiological and behavioral evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB Journal, 2009, 23, 3619-3628.	0.2	106

#	Article	IF	CITATIONS
37	Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson's disease treatment. Journal of Neurochemistry, 2009, 109, 1096-1105.	2.1	65
38	Depression of excitatory transmission at PFâ€PC synapse by group III metabotropic glutamate receptors is provided exclusively by mGluR4 in the rodent cerebellar cortex. Journal of Neurochemistry, 2008, 105, 2069-2079.	2.1	28
39	High-Potency Olfactory Receptor Agonists Discovered by Virtual High-Throughput Screening: Molecular Probes for Receptor Structure and Olfactory Function. Neuron, 2008, 60, 767-774.	3.8	26
40	Group III metabotropic glutamate receptors inhibit hyperalgesia in animal models of inflammation and neuropathic pain. Pain, 2008, 137, 112-124.	2.0	96
41	Targeting Group III Metabotropic Glutamate Receptors Produces Complex Behavioral Effects in Rodent Models of Parkinson's Disease. Journal of Neuroscience, 2007, 27, 6701-6711.	1.7	98
42	Synthesis and Biological Evaluation of 1-Amino-2-Phosphonomethylcyclopropanecarboxylic Acids, New Group III Metabotropic Glutamate Receptor Agonists. Journal of Medicinal Chemistry, 2007, 50, 3585-3595.	2.9	49
43	<scp>I</scp> -(+)-2-Amino-4-thiophosphonobutyric Acid (<scp>I</scp> -thioAP4), a New Potent Agonist of Group III Metabotropic Glutamate Receptors:  Increased Distal Acidity Affords Enhanced Potency. Journal of Medicinal Chemistry, 2007, 50, 4656-4664.	2.9	60
44	Amino acid recognition by Venus flytrap domains is encoded in an 8-residue motif. Biopolymers, 2005, 80, 357-366.	1.2	82
45	Virtual Screening Workflow Development Guided by the "Receiver Operating Characteristic―Curve Approach. Application to High-Throughput Docking on Metabotropic Glutamate Receptor Subtype 4. Journal of Medicinal Chemistry, 2005, 48, 2534-2547.	2.9	548
46	Heptahelical domain of metabotropic glutamate receptor 5 behaves like rhodopsin-like receptors. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 378-383.	3.3	199
47	Closure of the Venus flytrap module of mGlu8 receptor and the activation process: Insights from mutations converting antagonists into agonists. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11097-11102.	3.3	120
48	Common and Selective Molecular Determinants Involved in Metabotopic Glutamate Receptor Agonist Activity. Journal of Medicinal Chemistry, 2002, 45, 3171-3183.	2.9	69
49	The Metabotropic Glutamate Receptors: Structure, Activation Mechanism and Pharmacology. CNS and Neurological Disorders, 2002, 1, 297-317.	4.3	241
50	Threeâ€dimensional model of the extracellular domain of the type 4a metabotropic glutamate receptor: New insights into the activation process. Protein Science, 2000, 9, 2200-2209.	3.1	63
51	New perspectives for the development of selective metabotropic glutamate receptor ligands. European Journal of Pharmacology, 1999, 375, 277-294.	1.7	139
52	Agonist Selectivity of mGluR1 and mGluR2 Metabotropic Receptors: A Different Environment but Similar Recognition of an Extended Glutamate Conformation. Journal of Medicinal Chemistry, 1999, 42, 1546-1555.	2.9	56
53	Extended glutamate activates metabotropic receptor types 1, 2 and 4: selective features at mGluR4 binding site. Neuropharmacology, 1999, 38, 1543-1551.	2.0	39
54	Comparative effect of l-CCG-I, DCG-IV and \hat{l}^3 -carboxy-l-glutamate on all cloned metabotropic glutamate receptor subtypes. Neuropharmacology, 1998, 37, 1043-1051.	2.0	148

#	Article	IF	CITATIONS
55	Synthesis and Pharmacological Characterization of Aminocyclopentanetricarboxylic Acids:Â New Tools to Discriminate between Metabotropic Glutamate Receptor Subtypes. Journal of Medicinal Chemistry, 1997, 40, 3119-3129.	2.9	135
56	Resolution and regioselective protection of glutamic acid analogues. II- Synthesis, resolution and configuration assignment of $(+)$ - \hat{l} ±-methyl-4-carâ \hat{p} phenylglycine (M4CPG). Tetrahedron: Asymmetry, 1996, 7, 2963-2970.	1.8	9
57	Synthesis of diastereoisomeric peptides incorporating cycloglutamic acids Substrate specificity of vitamin Kâ€dependent carboxylation. International Journal of Peptide and Protein Research, 1991, 37, 210-219.	0.1	5