Vincent D Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4987209/publications.pdf

Version: 2024-02-01

279487 264894 2,215 44 23 citations h-index papers

42 g-index 50 50 50 2725 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pleasure Rather Than Salience Activates Human Nucleus Accumbens and Medial Prefrontal Cortex. Journal of Neurophysiology, 2007, 98, 1374-1379.	0.9	197
2	Dopamine modulates novelty seeking behavior during decision making Behavioral Neuroscience, 2014, 128, 556-566.	0.6	183
3	Emotional imagery: Assessing pleasure and arousal in the brain's reward circuitry. Human Brain Mapping, 2010, 31, 1446-1457.	1.9	158
4	The Timing of Emotional Discrimination in Human Amygdala and Ventral Visual Cortex. Journal of Neuroscience, 2009, 29, 14864-14868.	1.7	148
5	Motivational neural circuits underlying reinforcement learning. Nature Neuroscience, 2017, 20, 505-512.	7.1	144
6	Reversal Learning and Dopamine: A Bayesian Perspective. Journal of Neuroscience, 2015, 35, 2407-2416.	1.7	127
7	Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning. Neuron, 2016, 92, 505-517.	3.8	112
8	Balancing exploration and exploitation with information and randomization. Current Opinion in Behavioral Sciences, 2021, 38, 49-56.	2.0	99
9	More than Meets the Eye: the Relationship between Pupil Size and Locus Coeruleus Activity. Neuron, 2016, 89, 8-10.	3.8	88
10	Subcortical Substrates of Explore-Exploit Decisions in Primates. Neuron, 2019, 103, 533-545.e5.	3.8	87
11	Scan patterns when viewing natural scenes: Emotion, complexity, and repetition. Psychophysiology, 2011, 48, 1544-1553.	1.2	77
12	The Role of Frontal Cortical and Medial-Temporal Lobe Brain Areas in Learning a Bayesian Prior Belief on Reversals. Journal of Neuroscience, 2015, 35, 11751-11760.	1.7	66
13	Oxytocin enhances attention to the eye region in rhesus monkeys. Frontiers in Neuroscience, 2014, 8, 41.	1.4	64
14	Amygdala lesions in rhesus macaques decrease attention to threat. Nature Communications, 2015, 6, 10161.	5.8	60
15	Prefrontal Regulation of Punished Ethanol Self-administration. Biological Psychiatry, 2020, 87, 967-978.	0.7	53
16	Selective looking at natural scenes: Hedonic content and gender. International Journal of Psychophysiology, 2015, 98, 54-58.	0.5	51
17	From threat to safety: Instructed reversal of defensive reactions. Psychophysiology, 2015, 52, 325-332.	1.2	46
18	Primate Orbitofrontal Cortex Codes Information Relevant for Managing Explore–Exploit Tradeoffs. Journal of Neuroscience, 2020, 40, 2553-2561.	1.7	45

#	Article	IF	CITATIONS
19	Imaging distributed and massed repetitions of natural scenes: Spontaneous retrieval and maintenance. Human Brain Mapping, 2015, 36, 1381-1392.	1.9	43
20	Effects of Ventral Striatum Lesions on Stimulus-Based versus Action-Based Reinforcement Learning. Journal of Neuroscience, 2017, 37, 6902-6914.	1.7	43
21	Tagging cortical networks in emotion: A topographical analysis. Human Brain Mapping, 2012, 33, 2920-2931.	1.9	38
22	Threat of suffocation and defensive reflex activation. Psychophysiology, 2011, 48, 393-396.	1,2	35
23	Learned Value Shapes Responses to Objects in Frontal and Ventral Stream Networks in Macaque Monkeys. Cerebral Cortex, 2017, 27, 2739-2757.	1.6	30
24	Ventral striatum's role in learning from gains and losses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12398-E12406.	3.3	28
25	Directional interconnectivity of the human amygdala, fusiform gyrus, and orbitofrontal cortex in emotional scene perception. Journal of Neurophysiology, 2019, 122, 1530-1537.	0.9	26
26	Do brain responses to emotional images and cigarette cues differ? An fMRI study in smokers. European Journal of Neuroscience, 2011, 34, 2054-2063.	1.2	25
27	Frontal-Parietal and Limbic-Striatal Activity Underlies Information Sampling in the Best Choice Problem. Cerebral Cortex, 2015, 25, 972-982.	1.6	25
28	The neurocomputational bases of explore-exploit decision-making. Neuron, 2022, 110, 1869-1879.e5.	3.8	21
29	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	15
30	Effects of Amygdala Lesions on Object-Based Versus Action-Based Learning in Macaques. Cerebral Cortex, 2021, 31, 529-546.	1.6	14
31	Differential coding of goals and actions in ventral and dorsal corticostriatal circuits during goal-directed behavior. Cell Reports, 2022, 38, 110198.	2.9	12
32	Aversive perception in a threat context: Separate and independent neural activation. Biological Psychology, 2020, 154, 107926.	1.1	11
33	Entropy-based metrics for predicting choice behavior based on local response to reward. Nature Communications, 2021, 12, 6567.	5.8	8
34	Blocking serotonin but not dopamine reuptake alters neural processing during perceptual decision making Behavioral Neuroscience, 2016, 130, 461-468.	0.6	7
35	Cross-species convergence in pupillary response: understanding human anxiety via non-human primate amygdala lesion. Social Cognitive and Affective Neuroscience, 2019, 14, 591-599.	1.5	7
36	Adolescent Dopamine Neurons Represent Reward Differently during Action and State Guided Learning. Journal of Neuroscience, 2021, 41, 9419-9430.	1.7	7

#	Article	IF	CITATIONS
37	Assessing the role of the amygdala in fear of pain: Neural activation under threat of shock. Journal of Affective Disorders, 2020, 276, 1142-1148.	2.0	4
38	Deliberative Choice Strategies in Youths: Relevance to Transdiagnostic Anxiety Symptoms. Clinical Psychological Science, 2021, 9, 979-989.	2.4	2
39	Looking into the future. ELife, 2014, 3, e03146.	2.8	2
40	376. Subcortical Contributions to the Explore-Exploit Tradeoff. Biological Psychiatry, 2017, 81, S154.	0.7	2
41	Fluoxetine incentivizes ventral striatum encoding of reward and punishment. Neuropsychopharmacology, 2021, 46, 2041-2042.	2.8	1
42	Clozapine is my favorite color: Chemogenetic modulation of anxiety-related behavior in primates. Molecular Therapy, 2021, 29, 3322-3324.	3.7	1
43	Of Pathways, Processes, and Orbitofrontal Cortex. Neuron, 2019, 103, 556-558.	3.8	O
44	Anterior cingulate and putamen neurons flexibly learn whether a hot dog is a sandwich. Neuron, 2021, 109, 747-750.	3.8	0