Vladimir Chuvil'deev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4986630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of mechanical properties and corrosion resistance of fine-grained aluminum alloys Al-Zn with reduced zinc content. Journal of Alloys and Compounds, 2022, 891, 162110.	2.8	13
2	Investigation of the Densification Behavior of Alumina during Spark Plasma Sintering. Materials, 2022, 15, 2167.	1.3	14
3	Investigation of Effect of Preliminary Annealing on Superplasticity of Ultrafine-Grained Conductor Aluminum Alloys Al-0.5%Mg-Sc. Materials, 2022, 15, 176.	1.3	2
4	Investigation of Thermal Stability of Microstructure and Mechanical Properties of Bimetallic Fine-Grained Wires from Al–0.25%Zr–(Sc,Hf) Alloys. Materials, 2022, 15, 185.	1.3	7
5	Investigation of the Processes of Fatigue and Corrosion-Fatigue Destruction of Pseudo-α Titanium Alloy. Inorganic Materials: Applied Research, 2022, 13, 349-356.	0.1	2
6	Effect of grain boundary state and grain size on the microstructure and mechanical properties of alumina obtained by SPS: A case of the amorphous layer on particle surface. Ceramics International, 2022, 48, 25723-25740.	2.3	6
7	Investigation of the Microstructure of Fine-Grained YPO4:Gd Ceramics with Xenotime Structure after Xe Irradiation. Ceramics, 2022, 5, 237-252.	1.0	9
8	Effect of Hydrogen on the Structure and Mechanical Properties of 316L Steel and Inconel 718 Alloy Processed by Selective Laser Melting. Materials, 2022, 15, 4806.	1.3	3
9	Influence of oxygen on densification kinetics of WC nanopowders during SPS. Ceramics International, 2021, 47, 4294-4309.	2.3	21
10	Spark plasma sintering of fine-grained WC hard alloys with ultra-low cobalt content. Journal of Alloys and Compounds, 2021, 857, 157535.	2.8	19
11	Binderless tungsten carbides with an increased oxygen content obtained by spark plasma sintering. Journal of Physics: Conference Series, 2021, 1758, 012023.	0.3	1
12	Studying Corrosion Resistance of Weld Joints of Ultrafine-Grained Titanium Alloys. IOP Conference Series: Materials Science and Engineering, 2021, 1014, 012037.	0.3	0
13	Superplasticity of fine-grained alumina obtained by spark plasma sintering. Journal of Physics: Conference Series, 2021, 1758, 012031.	0.3	Ο
14	Effect of initial particle size and various composition on the spark plasma sintering of binderless tungsten carbide. Journal of Physics: Conference Series, 2021, 1758, 012022.	0.3	1
15	Thermal Stability of the Structure and Mechanical Properties of Submicrocrystalline Al–0.5% Mg–Sc Aluminum Alloys. Russian Metallurgy (Metally), 2021, 2021, 7-24.	0.1	4
16	Spark Plasma Sintering of WC–10Co Nanopowders with Various Carbon Content Obtained by Plasma-Chemical Synthesis. Inorganic Materials: Applied Research, 2021, 12, 528-537.	0.1	3
17	Study of the Hydrolytic Stability of Fine-Grained Ceramics Based on Y2.5Nd0.5Al5O12 Oxide with a Garnet Structure under Hydrothermal Conditions. Materials, 2021, 14, 2152.	1.3	11
18	Investigation of Aspects of High-Speed Sintering of Plasma-Chemical Nanopowders of Tungsten Carbide with Higher Content of Oxygen. Inorganic Materials: Applied Research, 2021, 12, 650-663.	0.1	7

#	Article	IF	CITATIONS
19	Synthesis, Thermal Expansion Behavior and Sintering of Sodium Zirconium Nickel and Calcium Zirconium Nickel Phosphates. Inorganic Materials, 2021, 57, 529-540.	0.2	6
20	Enhancement of the Strength and the Corrosion Resistance of a PT-7M Titanium Alloy Using Rotary Forging. Russian Metallurgy (Metally), 2021, 2021, 600-610.	0.1	3
21	A Study of the Impact of Graphite on the Kinetics of SPS in Nano- and Submicron WC-10%Co Powder Compositions. Ceramics, 2021, 4, 331-363.	1.0	9
22	Investigation of Microstructure and Corrosion Resistance of Ti-Al-V Titanium Alloys Obtained by Spark Plasma Sintering. Metals, 2021, 11, 945.	1.0	10
23	Model of Primary Recrystallization in Pure Copper. Physics of Metals and Metallography, 2021, 122, 673-680.	0.3	2
24	Radiation Resistance and Hydrolytic Stability of Y0.95Gd0.05PO4-Based Ceramics with the Xenotime Structure. Inorganic Materials, 2021, 57, 760-765.	0.2	5
25	Corrosion Resistance of Welded Joints in the Ultrafine-Grained Pseudo-α-Titanium Ti–5Al–2V Alloy. Physics of Metals and Metallography, 2021, 122, 761-767.	0.3	2
26	Spark Plasma Sintering, Phase Composition, and Properties of AlMgB14 Ceramic Materials. Russian Journal of Inorganic Chemistry, 2021, 66, 1252-1256.	0.3	5
27	Superplasticity of High-Strength Submicrocrystalline Al–0.5Mg–Sc Aluminum Alloys. Russian Metallurgy (Metally), 2021, 2021, 1102-1115.	0.1	1
28	Review of ballistic performance of alumina: Comparison of alumina with silicon carbide and boron carbide. Ceramics International, 2021, 47, 25201-25213.	2.3	29
29	Investigation of superplasticity and dynamic grain growth in ultrafine-grained Al–0.5%Mg–Sc alloys. Journal of Alloys and Compounds, 2021, 877, 160099.	2.8	15
30	The effect additives of magnesium, titanium and zirconium oxides additives on the densification kinetics and structure of alumina during spark plasma sintering. IOP Conference Series: Materials Science and Engineering, 2021, 1014, 012045.	0.3	1
31	Studying Thermal Stability of Cast and Microcrystalline Alloys Al-(2.5, 4)%Mg-Sc-Zr. IOP Conference Series: Materials Science and Engineering, 2021, 1014, 012051.	0.3	Ο
32	Ultralow-cobalt hard alloys obtained by spark plasma sintering. IOP Conference Series: Materials Science and Engineering, 2021, 1014, 012020.	0.3	1
33	Procedure for determining the constants of JH-2 (Johnson – Holmquist) dynamic fracture model for brittle materials. Zavodskaya Laboratoriya Diagnostika Materialov, 2021, 87, 48-54.	0.1	Ο
34	Fabrication of fine-grained CeO2-SiC ceramics for inert fuel matrices by Spark Plasma Sintering. Journal of Nuclear Materials, 2020, 539, 152225.	1.3	8
35	Thermal Stability of the Structure and Mechanical Properties of Fine-Grained Aluminum Conductor Alloys Al–Mg–Zr–Sc(Yb). Russian Metallurgy (Metally), 2020, 2020, 987-998. 	0.1	3
36	Experimental Study of Dynamic Strength of Aluminum Oxide Based Fine-Grained Ceramics Obtained by Spark Plasma Sintering. Journal of Applied Mechanics and Technical Physics, 2020, 61, 494-500.	0.1	3

#	Article	IF	CITATIONS
37	Kinetics of Spark Plasma Sintering of WC–10% Co Ultrafine-Grained Hard Alloy. Inorganic Materials: Applied Research, 2020, 11, 586-597.	0.1	8
38	Corrosion–Fatigue Fracture of the Ultrafine-Grained PT-7M Titanium Alloy Fabricated by Rotary Forging. Russian Metallurgy (Metally), 2020, 2020, 767-778.	0.1	0
39	Study of the kinetics of spark plasma sintering of ultrafine-grained hard alloys WC-10%Co. Journal of Physics: Conference Series, 2020, 1431, 012030.	0.3	1
40	New method of the estimation of the bending strength of ultrafine-grained structural ceramics for application in the conditions of multiaxial stress-strain state. Journal of Physics: Conference Series, 2020, 1431, 012031.	0.3	0
41	An investigation of thermal stability of structure and mechanical properties of Al-0.5Mg–Sc ultrafine-grained aluminum alloys. Journal of Alloys and Compounds, 2020, 831, 154805.	2.8	21
42	Preparation of Fine-Grained CeO2–SiC Ceramics for Inert Fuel Matrices by Spark Plasma Sintering. Inorganic Materials, 2020, 56, 1307-1313.	0.2	2
43	Experimental Study of Dynamic Strength of Aluminum Oxide Based Fine-Grained Ceramics Obtained by Spark Plasma Sintering. Prikladnaâ Mehanika, TehniÄeskaâ Fizika, 2020, 61, 207-214.	0.0	1
44	Spark plasma sintering for high-speed diffusion bonding of the ultrafine-grained near-α Ti–5Al–2V alloy with high strength and corrosion resistance for nuclear engineering. Journal of Materials Science, 2019, 54, 14926-14949.	1.7	14
45	Modeling of the distribution of thermal fields during spark plasma sintering of alumina ceramics. IOP Conference Series: Materials Science and Engineering, 2019, 558, 012004.	0.3	4
46	Thermal Expansion of Scheelite-Like Molybdate Powders and Ceramics. Inorganic Materials, 2019, 55, 730-736.	0.2	6
47	Dynamic Strength of Heavy 90W—7Ni—3Fe Alloy Produced by Spark Plasma Sintering. Physical Mesomechanics, 2019, 22, 307-312.	1.0	5
48	Study of Structure and Mechanical Properties of Fine-Grained Aluminum Alloys Al-0.6wt.%Mg-Zr-Sc with Ratio Zr:Sc = 1.5 Obtained by Cold Drawing. Materials, 2019, 12, 316.	1.3	19
49	Effect of severe plastic deformation realized by rotary swaging on the mechanical properties and corrosion resistance of near-α-titanium alloy Ti-2.5Al-2.6Zr. Journal of Alloys and Compounds, 2019, 785, 1233-1244.	2.8	26
50	Fine-Grained Tungstates SrWO4 and NaNd(WO4)2 with the Scheelite Structure Prepared by Spark Plasma Sintering. Russian Journal of Inorganic Chemistry, 2019, 64, 296-302.	0.3	9
51	Corrosion fatigue crack initiation in ultrafine-grained near-α titanium alloy PT7M prepared by Rotary Swaging. Journal of Alloys and Compounds, 2019, 790, 347-362.	2.8	6
52	The Use of SPS for High-Rate Diffusion Welding of High-Strength Ultrafine-Grained α-Titanium Alloy Ti-5Al-2V. , 2019, , 703-711.		0
53	Impact of High-Energy Mechanical Activation on Sintering Kinetics and Mechanical Properties of UFG Heavy Tungsten Alloys: SPS Versus Sintering in Hydrogen. , 2019, , 337-365.		0
54	Spark Plasma Sintering of fine-grained YAG:Nd+MgO composite ceramics based on garnet-type oxide Y2.5Nd0.5Al5O12 for inert fuel matrices. Materials Chemistry and Physics, 2019, 226, 323-330.	2.0	6

#	Article	IF	CITATIONS
55	Investigation of thermal stability of the structure and properties of ultra-fine-grained copper alloys obtained by ECAP. Journal of Physics: Conference Series, 2019, 1347, 012024.	0.3	1
56	An investigation of thermal stability of structure and mechanical properties of Al-0.5Mg-Sc submicrocrystalline aluminum alloys. Journal of Physics: Conference Series, 2019, 1347, 012055.	0.3	0
57	Study of the thermal stability of structure and mechanical properties of submicrocrystalline aluminum alloys Al-2.5Mg-Sc-Zr. Journal of Physics: Conference Series, 2019, 1347, 012058.	0.3	0
58	Investigation of superplasticity of ultrafine-grained copper alloys obtained using the ECAP. Journal of Physics: Conference Series, 2019, 1347, 012063.	0.3	1
59	Investigation of the kinetics of spark plasma sintering of alumina ceramics. Part 1. The initial stage of sintering. IOP Conference Series: Materials Science and Engineering, 2019, 558, 012005.	0.3	2
60	Investigation of the kinetics of spark plasma sintering of alumina. Part 2. Intermediate and final stages of sintering. IOP Conference Series: Materials Science and Engineering, 2019, 558, 012006.	0.3	1
61	Impact of mechanical activation on sintering kinetics and mechanical properties of ultrafine-grained 95W-Ni-Fe tungsten heavy alloys. Journal of Alloys and Compounds, 2019, 773, 666-688.	2.8	30
62	Spark Plasma Sintering of fine-grained SrWO4 and NaNd(WO4)2 tungstates ceramics with the scheelite structure for nuclear waste immobilization. Journal of Alloys and Compounds, 2019, 774, 182-190.	2.8	27
63	A theoretical model of grain boundary self-diffusion in metals with phase transitions (case study into) Tj ETQq1	1 0.784314 1.3	rgBT /Overlo
64	Spark Plasma Sintering of fine-grain ceramic-metal composites based on garnet-structure oxide Y2.5Nd0.5Al5O12 for inert matrix fuel. Materials Chemistry and Physics, 2018, 214, 516-526.	2.0	22
65	Effect of Recovery and Recrystallization on the Hall–Petch Relation Parameters in Submicrocrystalline Metals: I. Experimental Studies. Russian Metallurgy (Metally), 2018, 2018, 71-89.	0.1	6
66	Spark Plasma Sintering of high-density fine-grained Y2.5Nd0.5Al5O12+SiC composite ceramics. Materials Research Bulletin, 2018, 103, 211-215.	2.7	17
67	Characterization of Nax(Ca/Sr)1-2xNdxWO4 complex tungstates fine-grained ceramics obtained by Spark Plasma Sintering. Ceramics International, 2018, 44, 4033-4044.	2.3	25
68	The factors leading to abnormal grain growth during sintering of hard alloy. Journal of Physics: Conference Series, 2018, 1134, 012020.	0.3	0
69	Effect of Recovery and Recrystallization on the Hall–Petch Relation Parameters in Submicrocrystalline Metals: III. Model for the Effect of Recovery and Recrystallization on the Hall–Petch Relation Parameters. Russian Metallurgy (Metally), 2018, 2018, 867-879.	0.1	2
70	Preparation of NZP-Type Ca0.75 + 0.5xZr1.5Fe0.5(PO4)3 –x(SiO4)x Powders and Ceramic, Thermal Expansion Behavior. Inorganic Materials, 2018, 54, 1267-1273.	0.2	9
71	Preparation of Fine-Grained Y2.5Nd0.5Al5O12 + MgO composite ceramics for Inert Matrix Fuels by Spark Plasma Sintering. Inorganic Materials, 2018, 54, 1291-1298.	0.2	2
72	Spark Plasma Sintering of fine-grained ceramic-metal composites YAG:Nd-(W,Mo) based on garnet-type oxide Y2.5Nd0.5Al5O12 for inertÂmatrix fuel. Journal of Nuclear Materials, 2018, 511, 109-121.	1.3	11

#	Article	IF	CITATIONS
73	A theoretical model of lattice diffusion in oxide ceramics. Physica B: Condensed Matter, 2018, 545, 297-304.	1.3	8
74	A study of fine-grained ceramics based on complex oxides ZrO2-Ln2O3 (Ln = Sm, Yb) obtained by Spark Plasma Sintering for inert matrix fuel. Ceramics International, 2018, 44, 18595-18608.	2.3	17
75	Mechanisms of volume diffusion in metals near the Debye temperature. Materials Chemistry and Physics, 2018, 219, 273-277.	2.0	1
76	Effect of Recovery and Recrystallization on the Hall–Petch Relation Parameters in Submicrocrystalline Metals: II. Model for Calculating the Hall–Petch Relation Parameters. Russian Metallurgy (Metally), 2018, 2018, 487-499.	0.1	5
77	Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis. Journal of Alloys and Compounds, 2017, 708, 547-561.	2.8	61
78	Model of grain-boundary self-diffusion in α- and β-phases of titanium and zirconium. Physics of the Solid State, 2017, 59, 1-8.	0.2	3
79	The effect of the local chemical composition of grain boundaries on the corrosion resistance of a titanium alloy. Technical Physics Letters, 2017, 43, 5-8.	0.2	9
80	Development of composite ceramic materials with improved thermal conductivity and plasticity based on garnet-type oxides. Journal of Nuclear Materials, 2017, 489, 158-163.	1.3	13
81	Effect of the severe plastic deformation temperature on the diffusion properties of the grain boundaries in ultrafine-grained metals. Russian Metallurgy (Metally), 2017, 2017, 413-425.	0.1	3
82	Spark Plasma Sintering of high-strength ultrafine-grained tungsten carbide. IOP Conference Series: Materials Science and Engineering, 2017, 218, 012012.	0.3	2
83	Influence of high-energy ball milling on the solid-phase sintering kinetics of ultrafine-grained heavy tungsten alloy. Doklady Physics, 2017, 62, 420-424.	0.2	11
84	Study of mechanical properties and corrosive resistance of ultrafine-grained α-titanium alloy Ti-5Al-2V. Journal of Alloys and Compounds, 2017, 723, 354-367.	2.8	44
85	Studies into the impact of mechanical activation on optimal sintering temperature of UFG heavy tungsten alloys. IOP Conference Series: Materials Science and Engineering, 2017, 218, 012011.	0.3	0
86	The use of Spark Plasma Sintering method for high-rate diffusion welding of high-strength UFG titanium alloys. IOP Conference Series: Materials Science and Engineering, 2017, 218, 012013.	0.3	2
87	Model for the calculation of the volume change on melting of metals. Inorganic Materials, 2017, 53, 770-773.	0.2	3
88	Simultaneous increase in the strength, plasticity, and corrosion resistance of an ultrafine-grained Ti–4Al–2V pseudo-alpha-titanium alloy. Technical Physics Letters, 2017, 43, 466-469.	0.2	7
89	Advanced materials obtained by Spark Plasma Sintering. Acta Astronautica, 2017, 135, 192-197.	1.7	21
90	Changes in the diffusion properties of nonequilibrium grain boundaries upon recrystallization and superplastic deformation of submicrocrystalline metals and alloys. Physics of the Solid State, 2017, 59, 1584-1593.	0.2	4

#	Article	IF	CITATIONS
91	Spark plasma sintering of high-strength lightweight ceramics. IOP Conference Series: Materials Science and Engineering, 2017, 218, 012002.	0.3	1
92	Phenomenological theory of bulk diffusion in metal oxides. Physics of the Solid State, 2016, 58, 1487-1499.	0.2	5
93	The role of the "Casimir force analogue―at the microscopic processes of crystallization and melting. Annals of Physics, 2016, 373, 390-398.	1.0	3
94	Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by "wet― chemistry to sintering ceramics by Spark Plasma Sintering. Journal of Nuclear Materials, 2016, 473, 93-98.	1.3	40
95	The effect of grain boundaries state on the thermal stability of a submicrocrystalline titanium alloy structure. Technical Physics Letters, 2015, 41, 515-518.	0.2	3
96	High-strength ultrafine-grained tungsten-carbide-based materials obtained by spark plasma sintering. Technical Physics Letters, 2015, 41, 397-400.	0.2	10
97	Methods of compacting nanostructured tungsten–cobalt alloys from Nanopowders obtained by plasma chemical synthesis. Inorganic Materials: Applied Research, 2015, 6, 415-426.	0.1	19
98	A comparative study of the hot pressing and spark plasma sintering of Al2O3–ZrO2–Ti(C,N) powders. Inorganic Materials, 2015, 51, 1047-1053.	0.2	42
99	Comparative study of hot pressing and high-speed electropulse plasma sintering of Al2O3/ZrO2/Ti(C,N) powders. Russian Journal of Inorganic Chemistry, 2015, 60, 987-993.	0.3	18
100	Preparation and investigation of ultrafine-grained tungsten carbide with high hardness and fracture toughness. Doklady Physics, 2015, 60, 288-291.	0.2	8
101	Sparking plasma sintering of tungsten carbide nanopowders. Nanotechnologies in Russia, 2015, 10, 434-448.	0.7	12
102	Structure and properties of advanced materials obtained by Spark Plasma Sintering. Acta Astronautica, 2015, 109, 172-176.	1.7	75
103	High-speed electropulse plasma sintering of nanostructured tungsten carbide: Part 1. Experiment. Russian Journal of Non-Ferrous Metals, 2014, 55, 592-598.	0.2	6
104	Phosphorus-containing cesium compounds of pollucite structure. Preparation of high-density ceramic and its radiation tests. Radiochemistry, 2014, 56, 98-104.	0.2	17
105	Phosphate Ca1/4Sr1/4Zr2(PO4)3 of the NaZr2(PO4)3 structure type: Synthesis of a dense ceramic material and its radiation testing. Journal of Nuclear Materials, 2014, 446, 232-239.	1.3	40
106	Sintering of nano- and ultradispersed mechanically activated W-Ni-Fe powders and the manufacture of ultrahigh-strength heavy tungsten alloys. Russian Metallurgy (Metally), 2014, 2014, 215-228.	0.1	3
107	Praseodymium and neodymium phosphates Ca9Ln(PO4)7 of whitlockite structure. Preparation of a ceramic with a high relative density. Radiochemistry, 2014, 56, 380-384.	0.2	10
108	Study of the structure and mechanical properties of nano- and ultradispersed mechanically activated heavy tungsten alloys. Nanotechnologies in Russia, 2013, 8, 108-121.	0.7	18

#	Article	IF	CITATIONS
109	Solid solution decomposition mechanisms in as-cast and microcrystalline Al-Sc alloys: IV. Effect of the decomposition of a solid solution on the mechanical properties of the alloys. Russian Metallurgy (Metally), 2013, 2013, 676-690.	0.1	10
110	Tridymite Type Phosphates of Cesium and Divalent Metals: Synthesis and Characterization of Powder and Ceramic Samples. Physics Procedia, 2013, 44, 177-184.	1.2	3
111	Solid solution decomposition mechanisms in cast and microcrystalline Al-Sc alloys: I. Experimental studies. Russian Metallurgy (Metally), 2012, 2012, 415-427.	0.1	6
112	Solid solution decomposition mechanisms in cast and microcrystalline Al-Sc alloys: II. Model for the decomposition of a solid solution during the formation of coherent second-phase particles. Russian Metallurgy (Metally), 2012, 2012, 612-624.	0.1	10
113	Solid solution decomposition mechanisms in cast and microcrystalline Al-Sc alloys: III. Analysis of experimental data. Russian Metallurgy (Metally), 2012, 2012, 985-993.	0.1	11
114	Fabrication of NaZr2(PO4)3-type ceramic materials by spark plasma sintering. Inorganic Materials, 2012, 48, 313-317.	0.2	33
115	Effect of the simultaneous enhancement in strength and corrosion resistance of microcrystalline titanium alloys. Doklady Physics, 2012, 57, 10-13.	0.2	15
116	Nanostructured crystals of Sr1â´'x R x F2+x fluorite phases and their ordering: 6. Microindentation analysis of crystals. Crystallography Reports, 2012, 57, 144-150.	0.1	10
117	Superplasticity of an aluminum-lithium 1420 alloy in various structural states. Russian Metallurgy (Metally), 2011, 2011, 882-888.	0.1	2
118	Ultrastrong nanodispersed tungsten pseudoalloys produced by high-energy milling and spark plasma sintering. Doklady Physics, 2011, 56, 109-113.	0.2	10
119	Sintering of WC and WC-Co nanopowders with different inhibitor additions by the SPS method. Doklady Physics, 2011, 56, 114-117.	0.2	12
120	Effect of grain boundary diffusion acceleration during structural superplasticity of nano- and microcrystalline materials. Doklady Physics, 2011, 56, 520-522.	0.2	1
121	Mechanisms of bulk diffusion at "high―and "low―temperatures. Physics of the Solid State, 2011, 53, 779-785.	0.2	4
122	Mechanisms of bulk diffusion at high and low temperatures. Doklady Physics, 2010, 55, 47-51.	0.2	0
123	Influence of the grain size and structural state of grain boundaries on the parameter of low-temperature and high-rate superplasticity of nanocrystalline and microcrystalline alloys. Physics of the Solid State, 2010, 52, 1098-1106.	0.2	11
124	10.1007/s11446-008-3008-1., 2010, 53, 148.		0
125	Superhard nanodisperse tungsten heavy alloys obtained using the methods of mechanical activation and spark plasma sintering. Technical Physics Letters, 2009, 35, 1036-1039.	0.2	7
126	Superplasticity of the Al-18% Si microcrystalline hypereutectic alloy. Doklady Physics, 2008, 53, 148-151.	0.2	3

#	Article	IF	CITATIONS
127	Doubling of the strength and plasticity of a commercial aluminum-based alloy (AMg6) processed by equal channel angular pressing. Doklady Physics, 2008, 53, 584-587.	0.2	6
128	Strain hardening under structural superplasticity conditions. Physics of the Solid State, 2007, 49, 684-690.	0.2	2
129	Optimum grain size for superplastic deformation. Doklady Physics, 2006, 51, 500-504.	0.2	4
130	Effect of small chromium additions on the temperature of the onset of recrystallization in microcrystalline copper produced by equal-channel angular pressing. Physics of the Solid State, 2006, 48, 1425-1432.	0.2	0
131	Ultimate Grain Refinement by ECAP: Experiment and Theory. , 2006, , 69-76.		0
132	Dispersion limit upon equal-channel angular pressing. Temperature effect. Doklady Physics, 2004, 49, 296-302.	0.2	9
133	Low-temperature superplasticity and internal friction in microcrystalline Mg alloys processed by ECAP. Scripta Materialia, 2004, 50, 861-865.	2.6	107
134	Superplasticity and internal friction in microcrystalline AZ91 and ZK60 magnesium alloys processed by equal-channel angular pressing. Journal of Alloys and Compounds, 2004, 378, 253-257.	2.8	57
135	Low-temperature superplasticity of microcrystalline high-strength magnesium alloys produced by equal-channel angular pressing. Doklady Physics, 2003, 48, 343-346.	0.2	4
136	Une théorie des joints de grains hors d'équilibre et ses applications aux matériaux nano et microcristallins obtenus par extrusion dans des canaux déviés. Annales De Chimie: Science Des Materiaux, 2002, 27, 55-64.	0.2	23
137	Réalisation de superplasticité à grande vitesse dans des alliages Al_Mg_Sc_Zr par utilisation de l'extrusion dans des canaux déviés. Annales De Chimie: Science Des Materiaux, 2002, 27, 99-109.	0.2	22
138	Deformation Micromechanisms and Superplastic Flow Rheology in a Wide Strain Rate Range. Materials Science Forum, 1994, 170-172, 613-620.	0.3	3
139	Theoretical Investigation of the Microstructural Evolution of Superplastic Ceramics. Materials Science Forum, 1994, 170-172, 433-438.	0.3	1
140	The theory of structural superplasticity—II. Accumulation of defects on the intergranular and interphase boundaries. Accomodation of the grain-boundary sliding. The upper bound of the superplastic strain rate. Acta Metallurgica Et Materialia, 1992, 40, 895-905.	1.9	36
141	The theory of structural superplasticity—I. The physical nature of the superplasticity phenomenon. Acta Metallurgica Et Materialia, 1992, 40, 887-894.	1.9	74
142	The theory of structural superplasticity—III. Boundary migration and grain growth. Acta Metallurgica Et Materialia, 1992, 40, 907-914.	1.9	11
143	The theory of structural superplasticity—IV. Cavitation during superplastic deformation. Acta Metallurgica Et Materialia, 1992, 40, 915-924.	1.9	16
144	Structure, thermal stability and mechanical properties of composite wires made of conducting microalloyed aluminum alloys. IOP Conference Series: Materials Science and Engineering, 0, 1008, 012023.	0.3	0

#	Article	IF	CITATIONS
145	Corrosion resistance of ultrafine-grained pseudo-α titanium alloy PT-3V. IOP Conference Series: Materials Science and Engineering, 0, 1008, 012024.	0.3	0
146	Spark plasma sintering for high-rate diffusion welding of a UFG titanium alloy PT3V. IOP Conference Series: Materials Science and Engineering, 0, 558, 012029.	0.3	2