T David Waite

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4986469/publications.pdf

Version: 2024-02-01

14197 6606 22,220 349 79 citations h-index papers

g-index 355 355 355 16846 docs citations times ranked citing authors all docs

128

#	Article	IF	CITATIONS
1	Influence of salinity on the heterogeneous catalytic ozonation process: Implications to treatment of high salinity wastewater. Journal of Hazardous Materials, 2022, 423, 127255.	6.5	30
2	Influence of cations on As(III) removal from simulated groundwaters by double potential step chronoamperometry (DPSC) employing polyvinylferrocene (PVF) functionalized electrodes. Journal of Hazardous Materials, 2022, 424, 127472.	6.5	3
3	Electrochemical Ni-EDTA degradation and Ni removal from electroless plating wastewaters using an innovative Ni-doped PbO2 anode: Optimization and mechanism. Journal of Hazardous Materials, 2022, 424, 127655.	6.5	26
4	Electrochemical degradation of Ni-EDTA complexes in electroless plating wastewater using PbO2-Bi electrodes. Chemical Engineering Journal, 2022, 431, 133230.	6.6	29
5	Impact of reactive iron in coal mine dust on oxidant generation and epithelial lung cell viability. Science of the Total Environment, 2022, 810, 152277.	3.9	15
6	Application of digital twins for remote operation of membrane capacitive deionization (mCDI) systems. Desalination, 2022, 525, 115482.	4.0	15
7	Production of hydrogen peroxide in an intra-meander hyporheic zone at East River, Colorado. Scientific Reports, 2022, 12, 712.	1.6	3
8	Comparison of Performance of Conventional Ozonation and Heterogeneous Catalytic Ozonation Processes in Phosphate- and Bicarbonate-Buffered Solutions. ACS ES&T Engineering, 2022, 2, 210-221.	3.7	10
9	Elucidation of alveolar macrophage cell response to coal dusts: Role of ferroptosis in pathogenesis of coal workers' pneumoconiosis. Science of the Total Environment, 2022, 823, 153727.	3.9	5
10	Leveraging coordination chemistry in the design of bipolar energy storage materials for redox flow batteries. Sustainable Energy and Fuels, 2022, 6, 2179-2190.	2.5	3
11	Analysis of Ozonation Processes Using Coupled Modeling of Fluid Dynamics, Mass Transfer, and Chemical Reaction Kinetics. Environmental Science & Envir	4.6	11
12	Hydroxyl radicals in anodic oxidation systems: generation, identification and quantification. Water Research, 2022, 217, 118425.	5.3	70
13	Integrated flow anodic oxidation and ultrafiltration system for continuous defluorination of perfluorooctanoic acid (PFOA). Water Research, 2022, 216, 118319.	5.3	14
14	pH Dependence of Hydroxyl Radical, Ferryl, and/or Ferric Peroxo Species Generation in the Heterogeneous Fenton Process. Environmental Science & Enviro	4.6	50
15	Membrane-based electrochemical technologies: I. Membrane capacitive deionization and flow-electrode capacitive deionization., 2022,, 317-360.		1
16	Uranium adsorption– a review of progress from qualitative understanding to advanced model development. Radiochimica Acta, 2022, 110, 549-559.	0.5	5
17	Hydroxyl Radical Production via a Reaction of Electrochemically Generated Hydrogen Peroxide and Atomic Hydrogen: An Effective Process for Contaminant Oxidation?. Environmental Science & Emp; Technology, 2022, 56, 5820-5829.	4.6	27
18	Comparative Experimental and Computational Studies of Hydroxyl and Sulfate Radical-Mediated Degradation of Simple and Complex Organic Substrates. Environmental Science & Envi	4.6	18

#	Article	IF	CITATIONS
19	Caveats in the Use of Tertiary Butyl Alcohol as a Probe for Hydroxyl Radical Involvement in Conventional Ozonation and Catalytic Ozonation Processes. ACS ES&T Engineering, 2022, 2, 1665-1676.	3.7	18
20	Boron Removal from Reverse Osmosis Permeate Using an Electrosorption Process: Feasibility, Kinetics, and Mechanism. Environmental Science & Environmen	4.6	13
21	Lithium recovery using electrochemical technologies: Advances and challenges. Water Research, 2022, 221, 118822.	5.3	44
22	Comparative proteomics of the toxigenic diazotroph Raphidiopsis raciborskii (cyanobacteria) in response to iron. Environmental Microbiology, 2021, 23, 405-414.	1.8	2
23	Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI). Water Research, 2021, 189, 116653.	5.3	61
24	Self-Enhanced Decomplexation of Cu-Organic Complexes and Cu Recovery from Wastewaters Using an Electrochemical Membrane Filtration System. Environmental Science & Environmental Science & 2021, 55, 655-664.	4.6	67
25	Kinetic Analysis of H ₂ O ₂ Activation by an Iron(III) Complex in Water Reveals a Nonhomolytic Generation Pathway to an Iron(IV)oxo Complex. ACS Catalysis, 2021, 11, 787-799.	5.5	25
26	Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives. Environmental Science & Envir	4.6	125
27	Phosphate recovery as vivianite using a flow-electrode capacitive desalination (FCDI) and fluidized bed crystallization (FBC) coupled system. Water Research, 2021, 194, 116939.	5.3	52
28	Site specific assessment of the viability of membrane Capacitive Deionization (mCDI) in desalination of brackish groundwaters for selected crop watering. Desalination, 2021, 502, 114913.	4.0	16
29	Heterogeneous Fenton Chemistry Revisited: Mechanistic Insights from Ferrihydrite-Mediated Oxidation of Formate and Oxalate. Environmental Science & En	4.6	77
30	Development of a Mechanically Flexible 2D-MXene Membrane Cathode for Selective Electrochemical Reduction of Nitrate to N ₂ : Mechanisms and Implications. Environmental Science & Environmental Science & Technology, 2021, 55, 10695-10703.	4.6	68
31	Biogeochemical Mobility of Contaminants from a Replica Radioactive Waste Trench in Response to Rainfall-Induced Redox Oscillations. Environmental Science & Environmental Science & 2021, 55, 8793-8805.	4.6	9
32	Fe(II) Redox Chemistry in the Environment. Chemical Reviews, 2021, 121, 8161-8233.	23.0	242
33	Flow anodic oxidation: Towards high-efficiency removal of aqueous contaminants by adsorbed hydroxyl radicals at 1.5 V vs SHE. Water Research, 2021, 200, 117259.	5.3	34
34	Key Considerations When Assessing Novel Fenton Catalysts: Iron Oxychloride (FeOCl) as a Case Study. Environmental Science & En	4.6	37
35	Direct electron transfer (DET) processes in a flow anode system–Energy-efficient electrochemical oxidation of phenol. Water Research, 2021, 203, 117547.	5.3	28
36	Cooperative Co-Activation of Water and Hypochlorite by a Non-Heme Diiron(III) Complex. Journal of the American Chemical Society, 2021, 143, 15400-15412.	6.6	4

#	Article	IF	Citations
37	Kinetic Modeling-Assisted Mechanistic Understanding of the Catalytic Ozonation Process Using Cu–Al Layered Double Hydroxides and Copper Oxide Catalysts. Environmental Science & Technology, 2021, 55, 13274-13285.	4.6	24
38	Scale-up and Modelling of Flow-electrode CDI Using Tubular Electrodes. Water Research, 2021, 203, 117498.	5.3	18
39	Optimization of constant-current operation in membrane capacitive deionization (MCDI) using variable discharging operations. Water Research, 2021, 204, 117646.	5.3	17
40	A microstructural investigation of a Na2SO4 activated cement-slag blend. Cement and Concrete Research, 2021, 150, 106609.	4.6	25
41	Genomic Insights Into the Archaea Inhabiting an Australian Radioactive Legacy Site. Frontiers in Microbiology, 2021, 12, 732575.	1.5	5
42	Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration. Water Research, 2020, 168, 115186.	5.3	87
43	The impact of absorbents on ammonia recovery in a capacitive membrane stripping system. Chemical Engineering Journal, 2020, 382, 122851.	6.6	51
44	Energy recovery in pilot scale membrane CDI treatment of brackish waters. Water Research, 2020, 168, 115146.	5.3	64
45	Production of a Surface-Localized Oxidant during Oxygenation of Mackinawite (FeS). Environmental Science & Environmental Scien	4.6	45
46	Effectiveness of the Iron Chelator CN128 in Mitigating the Formation of Dopamine Oxidation Products Associated with the Progression of Parkinson's Disease. ACS Chemical Neuroscience, 2020, 11, 3646-3657.	1.7	14
47	Copper Inhibition of Triplet-Sensitized Phototransformation of Phenolic and Amine Contaminants. Environmental Science & Environmental Science & Enviro	4.6	22
48	Management of concentrate and waste streams for membrane-based algal separation in water treatment: A review. Water Research, 2020, 183, 115969.	5.3	20
49	The Nature and Oxidative Reactivity of Urban Magnetic Nanoparticle Dust Provide New Insights into Potential Neurotoxicity Studies. Environmental Science & Environmental Science & 2020, 54, 10599-10609.	4.6	7
50	Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites. Journal of Hazardous Materials, 2020, 392, 122261.	6.5	126
51	Manipulation of planar oxygen defect arrangements in multifunctional magnÃ'li titanium oxide hybrid systems: from energy conversion to water treatment. Energy and Environmental Science, 2020, 13, 5080-5096.	15.6	15
52	Selective Arsenic Removal from Groundwaters Using Redox-Active Polyvinylferrocene-Functionalized Electrodes: Role of Oxygen. Environmental Science & Electrodes: Role of Oxygen.	4.6	30
53	Why Was My Paper Rejected without Review?. Environmental Science & Environment	4.6	10
54	Iron Transformation and Its Role in Phosphorus Immobilization in a UCT-MBR with Vivianite Formation Enhancement. Environmental Science & Environmental Science & Environment. Environmental Environmental Environment. Environmental Environment. Environm	4.6	19

#	Article	IF	CITATIONS
55	Influence of pH on the Kinetics and Mechanism of Photoreductive Dissolution of Amorphous Iron Oxyhydroxide in the Presence of Natural Organic Matter: Implications to Iron Bioavailability in Surface Waters. Environmental Science & Environmental Envi	4.6	25
56	Mechanisms of enhancement in early hydration by sodium sulfate in a slag-cement blend $\hat{a} \in \text{``Insights}$ from pore solution chemistry. Cement and Concrete Research, 2020, 135, 106110.	4.6	63
57	Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater – a perspective. Environmental Science: Nano, 2020, 7, 2178-2194.	2.2	74
58	Effect of the Presence of Carbon in Ti ₄ O ₇ Electrodes on Anodic Oxidation of Contaminants. Environmental Science & Environmental	4.6	58
59	Self-Sustained Visible-Light-Driven Electrochemical Redox Desalination. ACS Applied Materials & Interfaces, 2020, 12, 32788-32796.	4.0	35
60	Evaluation of long-term performance of a continuously operated flow-electrode CDI system for salt removal from brackish waters. Water Research, 2020, 173, 115580.	5.3	68
61	Low energy consumption and mechanism study of redox flow desalination. Chemical Engineering Journal, 2020, 401, 126111.	6.6	75
62	Effect of Chloride and Suwannee River Fulvic Acid on Cu Speciation: Implications to Cu Redox Transformations in Simulated Natural Waters. Environmental Science & Environmental Science & 2334-2343.	4.6	22
63	Mechanistic insights into the catalytic ozonation process using iron oxide-impregnated activated carbon. Water Research, 2020, 177, 115785.	5.3	63
64	Equivalent film-electrode model for flow-electrode capacitive deionization: Experimental validation and performance analysis. Water Research, 2020, 181, 115917.	5.3	22
65	Inducing in Situ Crystallization of Vivianite in a UCT-MBR System for Enhanced Removal and Possible Recovery of Phosphorus from Sewage. Environmental Science & Environmental Science & 2019, 53, 9045-9053.	4. 6	34
66	Modified Double Potential Step Chronoamperometry (DPSC) Method for As(III) Electro-oxidation and Concomitant As(V) Adsorption from Groundwaters. Environmental Science & Envir	4.6	26
67	Impact of ferrous iron dosing on iron and phosphorus solids speciation and transformation in a pilot scale membrane bioreactor. Environmental Science: Water Research and Technology, 2019, 5, 1400-1411.	1.2	6
68	Is Superoxide-Mediated Fe(III) Reduction Important in Sunlit Surface Waters?. Environmental Science &	4.6	26
69	Water Recovery Rate in Short-Circuited Closed-Cycle Operation of Flow-Electrode Capacitive Deionization (FCDI). Environmental Science & Environmental	4.6	57
70	Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination. Environmental Science & Enp; Technology, 2019, 53, 13364-13373.	4.6	66
71	Redox- and EPR-Active Graphene Diiron Complex Nanocomposite. Langmuir, 2019, 35, 12339-12349.	1.6	4
72	Physiological responses of the freshwater N 2 â€fixing cyanobacterium Raphidiopsis raciborskii to Fe and N availabilities. Environmental Microbiology, 2019, 21, 1211-1223.	1.8	7

#	Article	IF	Citations
73	Iron uptake by bloom-forming freshwater cyanobacterium Microcystis aeruginosa in natural and effluent waters. Environmental Pollution, 2019, 247, 392-400.	3.7	14
74	Impact of light and Suwanee River Fulvic Acid on O2 and H2O2 Mediated Oxidation of Silver Nanoparticles in Simulated Natural Waters. Environmental Science & Environmental Sci	4.6	24
75	Implication of Non-electrostatic Contribution to Deionization in Flow-Electrode CDI: Case Study of Nitrate Removal From Contaminated Source Waters. Frontiers in Chemistry, 2019, 7, 146.	1.8	20
76	Silver sulfide nanoparticles in aqueous environments: formation, transformation and toxicity. Environmental Science: Nano, 2019, 6, 1674-1687.	2.2	35
77	Ammonia-Rich Solution Production from Wastewaters Using Chemical-Free Flow-Electrode Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2019, 7, 6480-6485.	3.2	80
78	Flow-Electrode CDI Removes the Uncharged Ca–UO ₂ –CO ₃ Ternary Complex from Brackish Potable Groundwater: Complex Dissociation, Transport, and Sorption. Environmental Science & Echnology, 2019, 53, 2739-2747.	4.6	54
79	Ligand-mediated contaminant degradation by bare and carboxymethyl cellulose-coated bimetallic palladium-zero valent iron nanoparticles in high salinity environments. Journal of Environmental Sciences, 2019, 77, 303-311.	3.2	8
80	Low cost desalination of brackish groundwaters by Capacitive Deionization (CDI) – Implications for irrigated agriculture. Desalination, 2019, 453, 37-53.	4.0	40
81	An extended standard blocking filtration law for exploring membrane pore internal fouling due to rate-determining adsorption. Separation and Purification Technology, 2019, 212, 974-979.	3.9	18
82	The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset?. Environmental Science &	4.6	493
83	Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems. Electrochimica Acta, 2019, 299, 727-735.	2.6	87
84	CFD modelling of uneven flows behaviour in flat-sheet membrane bioreactors: From bubble generation to shear stress distribution. Journal of Membrane Science, 2019, 570-571, 146-155.	4.1	31
85	Phosphorus removal by in situ generated Fe(II): Efficacy, kinetics and mechanism. Water Research, 2018, 136, 120-130.	5.3	64
86	Mechanism Underlying the Effectiveness of Deferiprone in Alleviating Parkinson's Disease Symptoms. ACS Chemical Neuroscience, 2018, 9, 1118-1127.	1.7	21
87	The effect of vitamin C and iron on dopamine-mediated free radical generation: implications to Parkinson's disease. Dalton Transactions, 2018, 47, 4059-4069.	1.6	20
88	Copper Inhibition of Triplet-Induced Reactions Involving Natural Organic Matter. Environmental Science & Environmental Science	4.6	36
89	Capacitive Membrane Stripping for Ammonia Recovery (CapAmm) from Dilute Wastewaters. Environmental Science and Technology Letters, 2018, 5, 43-49.	3.9	111
90	Effect of release of dopamine on iron transformations and reactive oxygen species (ROS) generation under conditions typical of coastal waters. Environmental Sciences: Processes and Impacts, 2018, 20, 232-244.	1.7	9

#	Article	IF	Citations
91	Effects of Good's Buffers and pH on the Structural Transformation of Zero Valent Iron and the Oxidative Degradation of Contaminants. Environmental Science & Technology, 2018, 52, 1393-1403.	4.6	35
92	pH-dependence of production of oxidants (Cu(III) and/or HO•) by copper-catalyzed decomposition of hydrogen peroxide under conditions typical of natural saline waters. Geochimica Et Cosmochimica Acta, 2018, 232, 30-47.	1.6	41
93	Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. Water Research, 2018, 128, 314-330.	5. 3	523
94	Ligand-promoted reductive cleaning of iron-fouled membranes from submerged membrane bioreactors. Journal of Membrane Science, 2018, 545, 126-132.	4.1	3
95	Role of adsorption in combined membrane fouling by biopolymers coexisting with inorganic particles. Chemosphere, 2018, 191, 226-234.	4.2	22
96	Effect of <i>Shewanella oneidensis</i> on the Kinetics of Fe(II)-Catalyzed Transformation of Ferrihydrite to Crystalline Iron Oxides. Environmental Science & Technology, 2018, 52, 114-123.	4.6	80
97	<i>In vitro</i> characterization of reactive oxygen species (ROS) generation by the commercially available Mesosilverâ,,¢ dietary supplement. Environmental Science: Nano, 2018, 5, 2686-2698.	2.2	5
98	Continuous Ammonia Recovery from Wastewaters Using an Integrated Capacitive Flow Electrode Membrane Stripping System. Environmental Science & Environmental Science & 2018, 52, 14275-14285.	4.6	131
99	Integration of photovoltaic energy supply with membrane capacitive deionization (MCDI) for salt removal from brackish waters. Water Research, 2018, 147, 276-286.	5.3	94
100	Advances in Surface Passivation of Nanoscale Zerovalent Iron: A Critical Review. Environmental Science & Environmental Science	4.6	225
101	Impact of pH on Iron Redox Transformations in Simulated Freshwaters Containing Natural Organic Matter. Environmental Science &	4.6	35
102	Kinetic Modeling of pH-Dependent Oxidation of Dopamine by Iron and Its Relevance to Parkinson's Disease. Frontiers in Neuroscience, 2018, 12, 859.	1.4	30
103	Transformation of AgCl Particles under Conditions Typical of Natural Waters: Implications for Oxidant Generation. Environmental Science & Environmenta	4.6	2
104	Correlating fluorescence spectral properties with DOM molecular weight and size distribution in wastewater treatment systems. Environmental Science: Water Research and Technology, 2018, 4, 1933-1943.	1.2	22
105	Investigating the effect of ascorbate on the Fe(II)-catalyzed transformation of the poorly crystalline iron mineral ferrihydrite. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1760-1769.	1.1	8
106	Short-Circuited Closed-Cycle Operation of Flow-Electrode CDI for Brackish Water Softening. Environmental Science & Environment	4.6	146
107	Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI. Water Research, 2018, 144, 296-303.	5. 3	135
108	Active chlorine mediated ammonia oxidation revisited: Reaction mechanism, kinetic modelling and implications. Water Research, 2018, 145, 220-230.	5. 3	158

#	Article	IF	CITATIONS
109	Oxidant Generation Resulting from the Interaction of Copper with Menadione (Vitamin K3)–a Model for Metal-mediated Oxidant Generation in Living Systems. Journal of Inorganic Biochemistry, 2018, 188, 38-49.	1.5	4
110	Redox Transformations of Iron in the Presence of Exudate from the Cyanobacterium <i>Microcystis aeruginosa</i> under Conditions Typical of Natural Waters. Environmental Science & Echnology, 2017, 51, 3287-3297.	4. 6	15
111	Contaminant Removal from Source Waters Using Cathodic Electrochemical Membrane Filtration: Mechanisms and Implications. Environmental Science & Enviro	4.6	76
112	Impact of <i>Microcystis aeruginosa</i> Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition. Environmental Science & Eamp; Technology, 2017, 51, 5500-5510.	4.6	8
113	Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Research, 2017, 120, 229-237.	5.3	242
114	The short-term reduction of uranium by nanoscale zero-valent iron (nZVI): role of oxide shell, reduction mechanism and the formation of U(<scp>v</scp>)-carbonate phases. Environmental Science: Nano, 2017, 4, 1304-1313.	2.2	47
115	Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI). Water Research, 2017, 121, 302-310.	5.3	101
116	Quantitative determination of trace hydrogen peroxide in the presence of sulfide using the Amplex Red/horseradish peroxidase assay. Analytica Chimica Acta, 2017, 963, 61-67.	2.6	36
117	Redox characterization of the Fe(II)-catalyzed transformation of ferrihydrite to goethite. Geochimica Et Cosmochimica Acta, 2017, 218, 257-272.	1.6	63
118	Fe(II) Interactions with Smectites: Temporal Changes in Redox Reactivity and the Formation of Green Rust. Environmental Science & Environmental Scienc	4.6	26
119	Electrochemically Generated <i>cis</i> -Carboxylato-Coordinated Iron(IV) Oxo Acid–Base Congeners as Promiscuous Oxidants of Water Pollutants. Inorganic Chemistry, 2017, 56, 14936-14947.	1.9	28
120	Foreword to the Special Issue from the Interfaces Against Pollution 2016 Conference: Environmental Challenges and Opportunities. Environmental Chemistry, 2017, 14, i.	0.7	0
121	Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	3.3	56
122	Formation, reactivity and aging of amorphous ferric oxides in the presence of model and membrane bioreactor derived organics. Water Research, 2017, 124, 341-352.	5. 3	9
123	Response of Microbial Community Function to Fluctuating Geochemical Conditions within a Legacy Radioactive Waste Trench Environment. Applied and Environmental Microbiology, 2017, 83, .	1.4	12
124	Iron Redox Transformations in the Presence of Natural Organic Matter: Effect of Calcium. Environmental Science & Environmental	4.6	14
125	Investigation of pH-dependent phosphate removal from wastewaters by membrane capacitive deionization (MCDI). Environmental Science: Water Research and Technology, 2017, 3, 875-882.	1.2	43
126	Light-Mediated Reactive Oxygen Species Generation and Iron Redox Transformations in the Presence of Exudate from the Cyanobacterium <i>Microcystis aeruginosa</i> Technology, 2017, 51, 8384-8395.	4.6	19

#	Article	IF	CITATIONS
127	Use of fourier transform infrared spectroscopy to examine the Fe(II)-Catalyzed transformation of ferrihydrite. Talanta, 2017, 175, 30-37.	2.9	38
128	Uranium extraction from a low-grade, stockpiled, non-sulfidic ore: Impact of added iron and the native microbial consortia. Hydrometallurgy, 2017, 167, 81-91.	1.8	12
129	Cost-effective Chlorella biomass production from dilute wastewater using a novel photosynthetic microbial fuel cell (PMFC). Water Research, 2017, 108, 356-364.	5.3	85
130	Fenton, photo-Fenton and Fenton-like processes. Water Intelligence Online, 2017, 16, 297-332.	0.3	2
131	Importance of Iron Complexation for Fenton-Mediated Hydroxyl Radical Production at Circumneutral pH. Frontiers in Marine Science, 2016, 3, .	1.2	73
132	Uranium Reduction by Fe(II) in the Presence of Montmorillonite and Nontronite. Environmental Science & Environmental Science & Environmental Science & Environmental Science & Environmental &	4.6	52
133	Specific global responses to N and Fe nutrition in toxic and nonâ€ŧoxic <i>Microcystis aeruginosa</i> Environmental Microbiology, 2016, 18, 401-413.	1.8	27
134	Cellular characteristics and growth behavior of ironâ€limited <i>Microcystis aeruginosa</i> in nutrientâ€depleted and nutrientâ€replete chemostat systems. Limnology and Oceanography, 2016, 61, 2151-2164.	1.6	7
135	Investigation of early hydration dynamics and microstructural development in ordinary Portland cement using 1H NMR relaxometry and isothermal calorimetry. Cement and Concrete Research, 2016, 83, 131-139.	4.6	67
136	An in situ XAS study of ferric iron hydrolysis and precipitation in the presence of perchlorate, nitrate, chloride and sulfate. Geochimica Et Cosmochimica Acta, 2016, 177, 150-169.	1.6	27
137	Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization. Water Research, 2016, 99, 112-121.	5.3	94
138	Faradaic Reactions in Water Desalination by Batch-Mode Capacitive Deionization. Environmental Science and Technology Letters, 2016, 3, 222-226.	3.9	250
139	Fluoride Removal from Brackish Groundwaters by Constant Current Capacitive Deionization (CDI). Environmental Science & Environ	4.6	80
140	Influence of Dissolved Silicate on Rates of Fe(II) Oxidation. Environmental Science & Emp; Technology, 2016, 50, 11663-11671.	4.6	59
141	Numerical simulations of impact of membrane module design variables on aeration patterns in membrane bioreactors. Journal of Membrane Science, 2016, 520, 201-213.	4.1	32
142	The reduction of 4-chloronitrobenzene by Fe(II)-Fe(III) oxide systems - correlations with reduction potential and inhibition by silicate. Journal of Hazardous Materials, 2016, 320, 143-149.	6.5	31
143	Physiological and Proteomic Responses of Continuous Cultures of Microcystis aeruginosa PCC 7806 to Changes in Iron Bioavailability and Growth Rate. Applied and Environmental Microbiology, 2016, 82, 5918-5929.	1.4	42
144	Development of Redox-Active Flow Electrodes for High-Performance Capacitive Deionization. Environmental Science & Environmenta	4.6	122

#	Article	IF	CITATIONS
145	The tortoise versus the hare - Possible advantages of microparticulate zerovalent iron (mZVI) over nanoparticulate zerovalent iron (nZVI) in aerobic degradation of contaminants. Water Research, 2016, 105, 331-340.	5.3	46
146	Mechanistic and kinetic insights into the ligand-promoted depassivation of bimetallic zero-valent iron nanoparticles. Environmental Science: Nano, 2016, 3, 737-744.	2.2	19
147	Elucidation of the interplay between Fe(II), Fe(III), and dopamine with relevance to iron solubilization and reactive oxygen species generation by catecholamines. Journal of Neurochemistry, 2016, 137, 955-968.	2.1	43
148	Fluid Structure Interaction analysis of lateral fibre movement in submerged membrane reactors. Journal of Membrane Science, 2016, 504, 240-250.	4.1	19
149	Oxidative Dissolution of Silver Nanoparticles by Chlorine: Implications to Silver Nanoparticle Fate and Toxicity. Environmental Science & Environmenta	4.6	62
150	Reduced Uranium Phases Produced from Anaerobic Reaction with Nanoscale Zerovalent Iron. Environmental Science & Environmental	4.6	43
151	Effect of Structural Transformation of Nanoparticulate Zero-Valent Iron on Generation of Reactive Oxygen Species. Environmental Science & Environmenta	4.6	124
152	Chlorine-Mediated Regeneration of Semiconducting AgCl(s) Following Light-Induced AgO Formation: Implications to Contaminant Degradation. Journal of Physical Chemistry C, 2016, 120, 5988-5996.	1.5	15
153	Reductive reactivity of borohydride- and dithionite-synthesized iron-based nanoparticles: A comparative study. Journal of Hazardous Materials, 2016, 303, 101-110.	6.5	26
154	Isotopically exchangeable Al in coastal lowland acid sulfate soils. Science of the Total Environment, 2016, 542, 129-135.	3.9	1
155	Effect of iron on membrane fouling by alginate in the absence and presence of calcium. Journal of Membrane Science, 2016, 497, 289-299.	4.1	35
156	Mechanistic insights into iron redox transformations in the presence of natural organic matter: Impact of pH and light. Geochimica Et Cosmochimica Acta, 2015, 165, 14-34.	1.6	56
157	Hydroquinone-Mediated Redox Cycling of Iron and Concomitant Oxidation of Hydroquinone in Oxic Waters under Acidic Conditions: Comparison with Iron–Natural Organic Matter Interactions. Environmental Science & Technology, 2015, 49, 14076-14084.	4.6	108
158	Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors. Water Research, 2015, 69, 210-222.	5.3	105
159	Effect of ionic strength on ligand exchange kinetics between a mononuclear ferric citrate complex and siderophore desferrioxamine B. Geochimica Et Cosmochimica Acta, 2015, 154, 81-97.	1.6	8
160	Light-Induced Extracellular Electron Transport by the Marine Raphidophyte <i>Chattonella marina</i> . Environmental Science & Eamp; Technology, 2015, 49, 1392-1399.	4.6	40
161	Uranium Binding Mechanisms of the Acid-Tolerant Fungus <i>Coniochaeta fodinicola </i> Environmental Science & amp; Technology, 2015, 49, 8487-8496.	4.6	36
162	Ascorbic acid-mediated reductive cleaning of iron-fouled membranes from submerged membrane bioreactors. Journal of Membrane Science, 2015, 477, 194-202.	4.1	15

#	Article	IF	Citations
163	Kinetic Modeling of the Electro-Fenton Process: Quantification of Reactive Oxygen Species Generation. Electrochimica Acta, 2015, 176, 51-58.	2.6	104
164	Interfaces against pollution 2014: From fundamental to applied environmental physical chemistry. Journal of Colloid and Interface Science, 2015, 446, 307.	5.0	2
165	Contaminant degradation by irradiated semiconducting silver chloride particles: Kinetics and modelling. Journal of Colloid and Interface Science, 2015, 446, 366-372.	5.0	6
166	Effect of chloride driven copper redox cycling on the kinetics of Fe(II) oxidation in aqueous solutions at pH $6.5\hat{a}$ \in "8.0. Geochimica Et Cosmochimica Acta, 2015, 161, 118-127.	1.6	13
167	The role of bacterial and algal exopolymeric substances in iron chemistry. Marine Chemistry, 2015, 173, 148-161.	0.9	44
168	Iron and phosphorus speciation in Fe-conditioned membrane bioreactor activated sludge. Water Research, 2015, 76, 213-226.	5.3	53
169	Numerical simulation of bubble induced shear inÂmembrane bioreactors: Effects of mixed liquor rheology and membrane configuration. Water Research, 2015, 75, 131-145.	5.3	52
170	Ferrous iron oxidation by molecular oxygen under acidic conditions: The effect of citrate, EDTA and fulvic acid. Geochimica Et Cosmochimica Acta, 2015, 160, 117-131.	1.6	107
171	Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water Research, 2015, 84, 342-349.	5.3	185
172	Competitive Effects of Calcium and Magnesium lons on the Photochemical Transformation and Associated Cellular Uptake of Iron by the Freshwater Cyanobacterial Phytoplankton <i>Microcystis aeruginosa</i> Liv. Environmental Science & Environmental S	4.6	25
173	Calcium-mediated polysaccharide gel formation and breakage: Impact on membrane foulant hydraulic properties. Journal of Membrane Science, 2015, 475, 395-405.	4.1	60
174	Cleaning strategies for iron-fouled membranes from submerged membrane bioreactor treatment of wastewaters. Journal of Membrane Science, 2015, 475, 9-21.	4.1	30
175	Depassivation of Aged Fe ⁰ by Divalent Cations: Correlation between Contaminant Degradation and Surface Complexation Constants. Environmental Science & Environmenta	4.6	61
176	Mechanistic Insights into Free Chlorine and Reactive Oxygen Species Production on Irradiation of Semiconducting Silver Chloride Particles. Journal of Physical Chemistry C, 2014, 118, 26659-26670.	1.5	22
177	<i>Fodinomyces uranophilus</i> gen. nov. sp. nov. and <i>Coniochaeta fodinicola</i> sp. nov., two uranium mine-inhabiting Ascomycota fungi from northern Australia. Mycologia, 2014, 106, 1073-1089.	0.8	43
178	Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: Mechanism and kinetics. Journal of Inorganic Biochemistry, 2014, 137, 74-84.	1.5	79
179	Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone. Free Radical Biology and Medicine, 2014, 71, 291-302.	1.3	31
180	Removal of phosphorus from wastewaters using ferrous salts $\hat{a} \in A$ pilot scale membrane bioreactor study. Water Research, 2014, 57, 140-150.	5.3	54

#	Article	IF	CITATIONS
181	Ferrous iron oxidation under acidic conditions – The effect of ferric oxide surfaces. Geochimica Et Cosmochimica Acta, 2014, 145, 1-12.	1.6	106
182	Optimizing the Design and Synthesis of Supported Silver Nanoparticles for Low Cost Water Disinfection. Environmental Science &	4.6	15
183	Fenton-like zero-valent silver nanoparticle-mediated hydroxyl radical production. Journal of Catalysis, 2014, 317, 198-205.	3.1	67
184	Reduction of U(VI) by Fe(II) during the Fe(II)-Accelerated Transformation of Ferrihydrite. Environmental Science & Environment	4.6	67
185	Solution Speciation of Plutonium and Americium at an Australian Legacy Radioactive Waste Disposal Site. Environmental Science & Environmental Science	4.6	25
186	Effect of Solution and Solid-Phase Conditions on the Fe(II)-Accelerated Transformation of Ferrihydrite to Lepidocrocite and Goethite. Environmental Science & Environmental Science & 2014, 48, 5477-5485.	4.6	265
187	Resolving Early Stages of Homogeneous Iron(III) Oxyhydroxide Formation from Iron(III) Nitrate Solutions at pH 3 Using Time-Resolved SAXS. Langmuir, 2014, 30, 3548-3556.	1.6	29
188	Photodegradation of contaminants using Ag@AgCl/rGO assemblages: Possibilities and limitations. Catalysis Today, 2014, 224, 122-131.	2.2	19
189	Exchangeable and secondary mineral reactive pools of aluminium in coastal lowland acid sulfate soils. Science of the Total Environment, 2014, 485-486, 232-240.	3.9	17
190	Impact of iron dosing of membrane bioreactors on membrane fouling. Chemical Engineering Journal, 2014, 252, 239-248.	6.6	29
191	Electrically released iron for fouling control in membrane bioreactors: A double-edged sword?. Desalination, 2014, 347, 10-14.	4.0	19
192	Effects of Aggregate Structure on the Dissolution Kinetics of Citrate-Stabilized Silver Nanoparticles. Environmental Science &	4.6	102
193	Copper-Catalyzed Hydroquinone Oxidation and Associated Redox Cycling of Copper under Conditions Typical of Natural Saline Waters. Environmental Science & Environmental Scienc	4.6	103
194	A Changing Framework for Urban Water Systems. Environmental Science & Environm	4.6	208
195	Depassivation of Aged Fe ⁰ by Ferrous lons: Implications to Contaminant Degradation. Environmental Science & Environ	4.6	64
196	An in situ quick-EXAFS and redox potential study of the Fe(II)-catalysed transformation of ferrihydrite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 435, 2-8.	2.3	48
197	Interfaces against Pollution: A`Rendez-Vous' between colloid physical chemistry and (bio) geoscience. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 435, 1.	2.3	0
198	Hydroxyl Radical Production by H ₂ O ₂ -Mediated Oxidation of Fe(II) Complexed by Suwannee River Fulvic Acid Under Circumneutral Freshwater Conditions. Environmental Science & Envi	4.6	95

#	Article	IF	CITATIONS
199	Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. Journal of Catalysis, 2013, 301, 54-64.	3.1	508
200	Synthesis and Characterization of Antibacterial Silver Nanoparticle-Impregnated Rice Husks and Rice Husk Ash. Environmental Science & Environmental Sc	4.6	50
201	Depassivation of Aged Fe ⁰ by Inorganic Salts: Implications to Contaminant Degradation in Seawater. Environmental Science & Environmental Sc	4.6	41
202	Iron Redox Transformations in Continuously Photolyzed Acidic Solutions Containing Natural Organic Matter: Kinetic and Mechanistic Insights. Environmental Science & Environmental Science & 2013, 47, 9190-9197.	4.6	35
203	Mechanism and Kinetics of Dark Iron Redox Transformations in Previously Photolyzed Acidic Natural Organic Matter Solutions. Environmental Science & Environmental Science & 2013, 47, 1861-1869.	4.6	59
204	Computational fluid dynamics (CFD) analysis of membrane reactors: modelling of membrane bioreactors for municipal wastewater treatment., 2013,, 532-568.		5
205	Silver Nanoparticle—Algae Interactions: Oxidative Dissolution, Reactive Oxygen Species Generation and Synergistic Toxic Effects. Environmental Science & Environmental Scie	4.6	151
206	Effects of pH, Chloride, and Bicarbonate on Cu(I) Oxidation Kinetics at Circumneutral pH. Environmental Science & Environmenta	4.6	119
207	Impact of Natural Organic Matter on H2O2-Mediated Oxidation of Fe(II) in Coastal Seawaters. Environmental Science & Environmental Science & Environmen	4.6	35
208	Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquatic Sciences, 2012, 74, 683-734.	0.6	330
209	Kinetics of Cu(II) Reduction by Natural Organic Matter. Journal of Physical Chemistry A, 2012, 116, 6590-6599.	1.1	86
210	H ₂ O ₂ -Mediated Oxidation of Zero-Valent Silver and Resultant Interactions among Silver Nanoparticles, Silver Ions, and Reactive Oxygen Species. Langmuir, 2012, 28, 10266-10275.	1.6	148
211	The impacts of low-cost treatment options upon scale formation potential in remote communities reliant on hard groundwaters. A case study: Northern Territory, Australia. Science of the Total Environment, 2012, 416, 22-31.	3.9	11
212	Effects of pH, floc age and organic compounds on the removal of phosphate by pre-polymerized hydrous ferric oxides. Separation and Purification Technology, 2012, 91, 38-45.	3.9	51
213	Superoxide-Mediated Formation and Charging of Silver Nanoparticles. Environmental Science & Emp; Technology, 2011, 45, 1428-1434.	4.6	144
214	Mechanism and Kinetics of Ligand Exchange between Ferric Citrate and Desferrioxamine B. Journal of Physical Chemistry A, 2011, 115, 5371-5379.	1,1	18
215	Phthalhydrazide Chemiluminescence Method for Determination of Hydroxyl Radical Production: Modifications and Adaptations for Use in Natural Systems. Analytical Chemistry, 2011, 83, 261-268.	3.2	49
216	Silver Nanoparticleâ^'Reactive Oxygen Species Interactions: Application of a Chargingâ^'Discharging Model. Journal of Physical Chemistry C, 2011, 115, 5461-5468.	1.5	193

#	Article	IF	Citations
217	Effect of Amorphous Fe(III) Oxide Transformation on the Fe(II)-Mediated Reduction of U(VI). Environmental Science & Environmen	4.6	96
218	Mineral species control of aluminum solubility in sulfate-rich acidic waters. Geochimica Et Cosmochimica Acta, 2011, 75, 965-977.	1.6	55
219	Photochemical production of superoxide and hydrogen peroxide from natural organic matter. Geochimica Et Cosmochimica Acta, 2011, 75, 4310-4320.	1.6	142
220	Influence of phosphate on the oxidation kinetics of nanomolar Fe(II) in aqueous solution at circumneutral pH. Geochimica Et Cosmochimica Acta, 2011, 75, 4601-4610.	1.6	30
221	Formation, reactivity, and aging of ferric oxide particles formed from Fe(II) and Fe(III) sources: Implications for iron bioavailability in the marine environment. Geochimica Et Cosmochimica Acta, 2011, 75, 7741-7758.	1.6	43
222	Novel application of a fish gill cell line assay to assess ichthyotoxicity of harmful marine microalgae. Harmful Algae, 2011, 10, 366-373.	2.2	50
223	Silver-modified mesoporous TiO2 photocatalyst for water purification. Water Research, 2011, 45, 2095-2103.	5.3	196
224	Applications of Time-Resolved Laser Fluorescence Spectroscopy to the Environmental Biogeochemistry of Actinides. Journal of Environmental Quality, 2011, 40, 731-741.	1.0	35
225	Iron uptake and toxin synthesis in the bloomâ€forming <i>Microcystis aeruginosa</i> under iron limitation. Environmental Microbiology, 2011, 13, 1064-1077.	1.8	123
226	Speciation and transport of arsenic in an acid sulfate soil-dominated catchment, eastern Australia. Chemosphere, 2011, 82, 879-887.	4.2	19
227	Comment on "Application of a superoxide (O2â^') thermal source (SOTS-1) for the determination and calibration of O2â^' fluxes in seawater―by Heller and Croot. Analytica Chimica Acta, 2011, 702, 144-145.	2.6	3
228	Enhanced inactivation of bacteria with silver-modified mesoporous TiO2 under weak ultraviolet irradiation. Microporous and Mesoporous Materials, 2011, 144, 97-104.	2.2	40
229	Natural organic matter fouling of microfiltration membranes: Prediction of constant flux behavior from constant pressure materials properties determination. Journal of Membrane Science, 2011, 366, 192-202.	4.1	32
230	Combined effect of membrane and foulant hydrophobicity and surface charge on adsorptive fouling during microfiltration. Journal of Membrane Science, 2011, 373, 140-151.	4.1	175
231	Quantification of solid pressure in the concentration polarization (CP) layer of colloidal particles and its impact on ultrafiltration. Journal of Colloid and Interface Science, 2011, 358, 290-300.	5.0	9
232	Iron Uptake by Toxic and Nontoxic Strains of Microcystis aeruginosa. Applied and Environmental Microbiology, 2011, 77, 7068-7071.	1.4	25
233	Pathways Contributing to the Formation and Decay of Ferrous Iron in Sunlit Natural Waters. ACS Symposium Series, 2011, , 153-176.	0.5	6
234	Dynamics of nonphotochemical superoxide production in the Great Barrier Reef lagoon. Limnology and Oceanography, 2010, 55, 1521-1536.	1.6	45

#	Article	lF	Citations
235	Process optimization in use of zero valent iron nanoparticles for oxidative transformations. Chemosphere, 2010, 81, 127-131.	4.2	50
236	Influence of calcium and silica on hydraulic properties of sodium montmorillonite assemblages under alkaline conditions. Journal of Colloid and Interface Science, 2010, 343, 366-373.	5.0	7
237	Effect of aggregate characteristics under different coagulation mechanisms on microfiltration membrane fouling. Desalination, 2010, 258, 19-27.	4.0	29
238	Effect of Fe(II) and Fe(III) Transformation Kinetics on Iron Acquisition by a Toxic Strain of Microcystis aeruginosa. Environmental Science & Environm	4.6	55
239	Role of Heterogeneous Precipitation in Determining the Nature of Products Formed on Oxidation of Fe(II) in Seawater Containing Natural Organic Matter. Environmental Science &	4.6	24
240	Oxygen and Superoxide-Mediated Redox Kinetics of Iron Complexed by Humic Substances in Coastal Seawater. Environmental Science & Environmental Science	4.6	45
241	Schwertmannite stability in acidified coastal environments. Geochimica Et Cosmochimica Acta, 2010, 74, 482-496.	1.6	61
242	Formation, aggregation and reactivity of amorphous ferric oxyhydroxides on dissociation of Fe(III)–organic complexes in dilute aqueous suspensions. Geochimica Et Cosmochimica Acta, 2010, 74, 5746-5762.	1.6	27
243	Iron speciation and iron species transformation in activated sludge membrane bioreactors. Water Research, 2010, 44, 3511-3521.	5. 3	51
244	Prediction of transmembrane pressure build-up in constant flux microfiltration of compressible materials in the absence and presence of shear. Journal of Membrane Science, 2009, 344, 204-210.	4.1	20
245	Analysis of polysaccharide, protein and humic acid retention by microfiltration membranes using Thomas' dynamic adsorption model. Journal of Membrane Science, 2009, 342, 22-34.	4.1	55
246	Dissociation kinetics of Fe(III)– and Al(III)–natural organic matter complexes at pH 6.0 and 8.0 and 25°C. Geochimica Et Cosmochimica Acta, 2009, 73, 2875-2887.	1.6	35
247	Impact of natural organic matter on H2O2-mediated oxidation of Fe(II) in a simulated freshwater system. Geochimica Et Cosmochimica Acta, 2009, 73, 2758-2768.	1.6	50
248	The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. Geochimica Et Cosmochimica Acta, 2009, 73, 4409-4422.	1.6	318
249	Isotopically Exchangeable Concentrations of Elements Having Multiple Oxidation States: The Case of Fe(II)/Fe(III) Isotope Self-Exchange in Coastal Lowland Acid Sulfate Soils. Environmental Science & Eamp; Technology, 2009, 43, 5365-5370.	4.6	8
250	Role of Gelling Soluble and Colloidal Microbial Products in Membrane Fouling. Environmental Science &	4.6	134
251	Management of Concentrated Waste Streams from High-Pressure Membrane Water Treatment Systems. Critical Reviews in Environmental Science and Technology, 2009, 39, 367-415.	6.6	76
252	New method for the determination of extracellular production of superoxide by marine phytoplankton using the chemiluminescence probes MCLA and red LA. Limnology and Oceanography: Methods, 2009, 7, 682-692.	1.0	52

#	Article	IF	CITATIONS
253	Retention of soluble microbial products in submerged membrane bioreactors. Desalination and Water Treatment, 2009, 6, 131-137.	1.0	2
254	Determination of hydraulic and depth-dependent properties of nematically ordered montmorillonite assemblages during microfiltration. Journal of Membrane Science, 2008, 313, 232-241.	4.1	3
255	Application of local material properties to prediction of constant flux filtration behaviour of compressible matter. Journal of Membrane Science, 2008, 318, 191-200.	4.1	5
256	Effectiveness of an Open Limestone Channel in Treating Acid Sulfate Soil Drainage. Water, Air, and Soil Pollution, 2008, 191, 293-304.	1.1	7
257	Treatment of Acid Sulfate Soil Drainage using Limestone in a Closed Tank Reactor. Water, Air, and Soil Pollution, 2008, 191, 319-330.	1.1	1
258	Effect of ionic strength and pH on hydraulic properties and structure of accumulating solid assemblages during microfiltration of montmorillonite suspensions. Journal of Colloid and Interface Science, 2008, 317, 214-227.	5.0	37
259	Multiphase flow models in quantifying constant pressure dead-end filtration and subsequent cake compression1. Dilute slurry filtration. Journal of Membrane Science, 2008, 308, 35-43.	4.1	11
260	Gel layer formation and hollow fiber membrane filterability of polysaccharide dispersions. Journal of Membrane Science, 2008, 322, 204-213.	4.1	71
261	Impact of gel layer formation on colloid retention in membrane filtration processes. Journal of Membrane Science, 2008, 325, 486-494.	4.1	84
262	Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Marine Chemistry, 2008, 108, 40-58.	0.9	654
263	Transformation dynamics and reactivity of dissolved and colloidal iron in coastal waters. Marine Chemistry, 2008, 110, 165-175.	0.9	24
264	Multiphase flow models in quantifying constant pressure dead-end filtration and subsequent cake compression2. Concentrated slurry filtration and cake compression. Journal of Membrane Science, 2008, 308, 44-53.	4.1	5
265	Characterization of floc size and structure under different monomer and polymer coagulants on microfiltration membrane fouling. Journal of Membrane Science, 2008, 321, 132-138.	4.1	130
266	Trace elements in ships' ballast water as tracers of mid-ocean exchange. Science of the Total Environment, 2008, 393, 11-26.	3.9	21
267	Measurement and Implications of Nonphotochemically Generated Superoxide in the Equatorial Pacific Ocean. Environmental Science & Equatorial Pacific Ocean. Environmental Science & Equatorial Pacific Ocean.	4.6	86
268	Oxygenation of Fe(II) in the Presence of Citrate in Aqueous Solutions at pH 6.0â^'8.0 and 25 °C:  Interpretation from an Fe(II)/Citrate Speciation Perspective. Journal of Physical Chemistry A, 2008, 112, 643-651.	1.1	63
269	pH Effects on Iron-Catalyzed Oxidation using Fenton's Reagent. Environmental Science & Technology, 2008, 42, 8522-8527.	4.6	201
270	Effect of divalent cations on the kinetics of Fe(III) complexation by organic ligands in natural waters. Geochimica Et Cosmochimica Acta, 2008, 72, 1335-1349.	1.6	44

#	Article	IF	Citations
271	Oxygenation of Fe(II) in natural waters revisited: Kinetic modeling approaches, rate constant estimation and the importance of various reaction pathways. Geochimica Et Cosmochimica Acta, 2008, 72, 3616-3630.	1.6	138
272	Superoxide-mediated Fe(II) formation from organically complexed Fe(III) in coastal waters. Geochimica Et Cosmochimica Acta, 2008, 72, 6079-6089.	1.6	40
273	Determination of Superoxide in Seawater Using 2-Methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin-3(7 <i>H</i>)-one Chemiluminescence. Analytical Chemistry, 2008, 80, 1215-1227.	3.2	82
274	Modeling the Kinetics of Fe(II) Oxidation in the Presence of Citrate and Salicylate in Aqueous Solutions at pH 6.0â^8.0 and 25 °C. Journal of Physical Chemistry A, 2008, 112, 5395-5405.	1.1	46
275	COMPARISON OF THE REACTIVITY OF NANOSIZED ZERO-VALENT IRON (nZVI) PARTICLES PRODUCED BY BOROHYDRIDE AND DITHIONITE REDUCTION OF IRON SALTS. Nano, 2008, 03, 341-349.	0.5	29
276	Impact of soil consolidation and solution composition on the hydraulic properties of coastal acid sulfate soils. Soil Research, 2008, 46, 112.	0.6	4
277	Reconciling kinetic and equilibrium observations of iron(III) solubility in aqueous solutions with a polymer-based model. Geochimica Et Cosmochimica Acta, 2007, 71, 5605-5619.	1.6	26
278	Superoxide-mediated reduction of organically complexed iron(III): Impact of pH and competing cations (Ca2+). Geochimica Et Cosmochimica Acta, 2007, 71, 5620-5634.	1.6	20
279	Kinetic Modeling of the Oxidation ofp-Hydroxybenzoic Acid by Fenton's Reagent:Â Implications of the Role of Quinones in the Redox Cycling of Iron. Environmental Science & Enp; Technology, 2007, 41, 4103-4110.	4.6	120
280	Superoxide Mediated Reduction of Organically Complexed Iron(III):Â Comparison of Non-Dissociative and Dissociative Reduction Pathways. Environmental Science & Environmental Science & 2007, 41, 3205-3212.	4.6	57
281	Compressible cake characterization from steady-state filtration analysis. AICHE Journal, 2007, 53, 1483-1495.	1.8	23
282	Production of Reactive Oxygen Species on Photolysis of Dilute Aqueous Quinone Solutions. Photochemistry and Photobiology, 2007, 83, 904-913.	1.3	56
283	Iron uptake by the ichthyotoxic <i>Chattonella marina</i> (Raphidophyceae): impact of superoxide generation ¹ . Journal of Phycology, 2007, 43, 978-991.	1.0	43
284	Treatment of Acid Sulfate Soil Drainage By Direct Application of Alkaline Reagents. Water, Air, and Soil Pollution, 2007, 178, 59-68.	1.1	13
285	Process Optimization of Fenton Oxidation Using Kinetic Modeling. Environmental Science & Emp; Technology, 2006, 40, 4189-4195.	4.6	152
286	Kinetics of Fe(III) precipitation in aqueous solutions at pH 6.0–9.5 and 25°C. Geochimica Et Cosmochimica Acta, 2006, 70, 640-650.	1.6	144
287	Superoxide-Mediated Dissolution of Amorphous Ferric Oxyhydroxide in Seawater. Environmental Science &	4.6	61
288	Optimized Parameters for Fluorescence-Based Verification of Ballast Water Exchange by Ships. Environmental Science & Environme	4.6	195

#	Article	IF	Citations
289	Role of superoxide in the photochemical reduction of iron in seawater. Geochimica Et Cosmochimica Acta, 2006, 70, 3869-3882.	1.6	80
290	Hydrochemistry of episodic drainage waters discharged from an acid sulfate soil affected catchment. Journal of Hydrology, 2006, 325, 356-375.	2.3	26
291	The FeL model of iron acquisition: Nondissociative reduction of ferric complexes in the marine environment. Limnology and Oceanography, 2006, 51, 1744-1754.	1.6	67
292	Environmental life cycle assessment of the microfiltration process. Journal of Membrane Science, 2006, 284, 214-226.	4.1	61
293	Sonolysis of 4-chlorophenol in aqueous solution: Effects of substrate concentration, aqueous temperature and ultrasonic frequency. Ultrasonics Sonochemistry, 2006, 13, 415-422.	3.8	157
294	The effect of vibration and coagulant addition on the filtration performance of submerged hollow fibre membranes. Journal of Membrane Science, 2006, 281, 726-734.	4.1	108
295	Risk and Governance in Water Recycling. Science Technology and Human Values, 2006, 31, 107-134.	1.7	7 5
296	Impact of Aggregate Size and Structure on Biosolids Settleability. Drying Technology, 2006, 24, 1209-1215.	1.7	0
297	Characteristics of the Acidity in Acid Sulfate Soil Drainage Waters, McLeods Creek, Northeastern NSW, Australia. Environmental Chemistry, 2006, 3, 225.	0.7	14
298	A simplified model for trace organics removal by continuous flow PAC adsorption/submerged membrane processes. Journal of Membrane Science, 2005, 253, 81-87.	4.1	28
299	Incorporating phosphorus management considerations into wastewater management practice. Environmental Science and Policy, 2005, 8, 1-15.	2.4	47
300	Effect of calcite on lead-rich cementitious solid waste forms. Cement and Concrete Research, 2005, 35, 1027-1037.	4.6	9
301	Comparison of solidification/stabilization effects of calcite between Australian and South Korean cements. Cement and Concrete Research, 2005, 35, 2143-2157.	4.6	17
302	Oxidative transformation of contaminants using colloidal zero-valent iron. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 265, 88-94.	2.3	103
303	Life Cycle Assessment of Water Recycling Technology. Water Resources Management, 2005, 19, 521-537.	1.9	84
304	Fenton-Mediated Oxidation in the Presence and Absence of Oxygen. Environmental Science & Emp; Technology, 2005, 39, 5052-5058.	4.6	113
305	Reduction of Organically Complexed Ferric Iron by Superoxide in a Simulated Natural Water. Environmental Science & Environment	4.6	157
306	Impact of Natural Organic Matter on Floc Size and Structure Effects in Membrane Filtrationâ€. Environmental Science & Environ	4.6	78

#	Article	IF	Citations
307	Use of Superoxide as an Electron Shuttle for Iron Acquisition by the Marine CyanobacteriumLyngbya majuscula. Environmental Science & Environmental Sci	4.6	136
308	Quantification of the Oxidizing Capacity of Nanoparticulate Zero-Valent Iron. Environmental Science &	4.6	417
309	Assessment of Trace Estrogenic Contaminants Removal by Coagulant Addition, Powdered Activated Carbon Adsorption and Powdered Activated Carbon/Microfiltration Processes. Journal of Environmental Engineering, ASCE, 2004, 130, 736-742.	0.7	30
310	Radiation-Assisted Process Enhancement in Wastewater Treatment. Journal of Environmental Engineering, ASCE, 2004, 130, 155-166.	0.7	22
311	Aggregate properties in relation to aggregation conditions under various applied shear environments. International Journal of Mineral Processing, 2004, 73, 295-307.	2.6	32
312	Oxidative Degradation of the Carbothioate Herbicide, Molinate, Using Nanoscale Zero-Valent Iron. Environmental Science & Envir	4.6	358
313	Predicting iron speciation in coastal waters from the kinetics of sunlight-mediated iron redox cycling. Aquatic Sciences, 2003, 65, 375-383.	0.6	67
314	Kinetics of iron complexation by dissolved natural organic matter in coastal waters. Marine Chemistry, 2003, 84, 85-103.	0.9	234
315	Kinetics of Hydrolysis and Precipitation of Ferric Iron in Seawater. Environmental Science & Emp; Technology, 2003, 37, 3897-3903.	4.6	99
316	Dewatering and the hydraulic properties of soft, sulfidic, coastal clay soils. Water Resources Research, 2003, 39, .	1.7	16
317	Effect of Dissolved Natural Organic Matter on the Kinetics of Ferrous Iron Oxygenation in Seawater. Environmental Science & En	4.6	132
318	Kinetic Modeling of TiO2-Catalyzed Photodegradation of Trace Levels of Microcystin-LR. Environmental Science & Environmental S	4.6	34
319	Adsorption of the Endocrine-Active Compound Estrone on Microfiltration Hollow Fiber Membranes. Environmental Science & Environ	4.6	48
320	Removal of natural populations of marine plankton by a large-scale ballast water treatment system. Marine Ecology - Progress Series, 2003, 258, 51-63.	0.9	82
321	Solar Pilot-scale Photocatalytic Degradation of Microcystin-LR. Journal of Advanced Oxidation Technologies, 2002, 5, .	0.5	1
322	Charge Effects in the Fractionation of Natural Organics Using Ultrafiltration. Environmental Science & Environmental &	4.6	71
323	Kinetic Model for Fe(II) Oxidation in Seawater in the Absence and Presence of Natural Organic Matter. Environmental Science & Technology, 2002, 36, 433-444.	4.6	297
324	Photo-Fenton degradation of dichloromethane for gas phase treatment. Chemosphere, 2002, 48, 401-406.	4.2	21

#	Article	IF	CITATIONS
325	A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams. Radiation Physics and Chemistry, 2002, 65, 367-378.	1.4	31
326	Kinetic modeling and simulation of PCE and TCE removal in aqueous solutions by electron-beam irradiation. Radiation Physics and Chemistry, 2002, 65, 579-587.	1.4	21
327	Effect of pH on the ultrasonic degradation of ionic aromatic compounds in aqueous solution. Ultrasonics Sonochemistry, 2002, 9, 163-168.	3.8	149
328	Kinetics and mechanisms of ultrasonic degradation of volatile chlorinated aromatics in aqueous solutions. Ultrasonics Sonochemistry, 2002, 9, 317-323.	3.8	104
329	Adsorption of trace steroid estrogens to hydrophobic hollow fibre membranes. Desalination, 2002, 146, 381-386.	4.0	39
330	Evidence of Shear Rate Dependence on Restructuring and Breakup of Latex Aggregates. Journal of Colloid and Interface Science, 2001, 236, 67-77.	5.0	161
331	Chemiluminescence of Luminol in the Presence of Iron(II) and Oxygen:Â Oxidation Mechanism and Implications for Its Analytical Use. Analytical Chemistry, 2001, 73, 5909-5920.	3.2	161
332	Photocatalytic Degradation of the Blue Green Algal Toxin Microcystin-LR in a Natural Organic-Aqueous Matrix. Environmental Science & Environmental Science & 243-249.	4.6	100
333	Adsorption and Sensitization Effects in Photocatalytic Degradation of Trace Contaminants. ACS Symposium Series, 1999, , 374-392.	0.5	1
334	Rapid Structure Characterization of Bacterial Aggregates. Environmental Science & Environmental Scienc	4.6	115
335	Baseline trace metal concentrations in New South Wales coastal waters. Marine and Freshwater Research, 1998, 49, 203.	0.7	34
336	A Kinetic Study of Cation Release from a Mixed Mineral Assemblage: Implications for Determination of Uranium Uptake. Radiochimica Acta, 1996, 74, 251-256.	0.5	18
337	Small Angle X-Ray Scattering of Hematite Aggregates. Particle and Particle Systems Characterization, 1994, 11, 315-319.	1.2	18
338	Cessation of Aggregate Growth. Particle and Particle Systems Characterization, 1993, 10, 152-155.	1.2	1
339	Manganese dynamics in surface waters of the eastern Caribbean. Journal of Geophysical Research, 1993, 98, 2361-2369.	3.3	11
340	Particulate iron formation dynamics in surface waters of the eastern Caribbean. Journal of Geophysical Research, 1993, 98, 2371-2383.	3.3	11
341	Photochemistry of Colloids and Surfaces in Natural Waters and Water Treatment. , 1990, , 27-44.		2
342	Photoassisted dissolution of a colloidal manganese oxide in the presence of fulvic acid. Environmental Science & Environmental	4.6	94

T DAVID WAITE

#	Article	IF	CITATIONS
343	Panel 1: Oceanic reactive chemical transients. Applied Geochemistry, 1988, 3, 9-17.	1.4	21
344	Photoredox Chemistry of Colloidal Metal Oxides. ACS Symposium Series, 1987, , 426-445.	0.5	10
345	Ligand exchange and fluorescence quenching studies of the fulvic acid-iron interaction. Analytica Chimica Acta, 1984, 162, 263-274.	2.6	45
346	Coulometric study of the redox dynamics of iron in seawater. Analytical Chemistry, 1984, 56, 787-792.	3.2	70
347	Photoreductive dissolution of colloidal iron oxides in natural waters. Environmental Science & Emp; Technology, 1984, 18, 860-868.	4.6	271
348	Characterization of complexing agents in natural waters by copper(II)/copper(I) amperometry. Analytical Chemistry, 1983, 55, 1268-1274.	3.2	44
349	Role of Iron in Light-Induced Environmental Processes. , 0, , 255-298.		11