Guoxiong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/498631/publications.pdf Version: 2024-02-01

		34493	25983
129	13,115	54	112
papers	citations	h-index	g-index
131	131	131	13820
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Boosting CO ₂ Electroreduction via Construction of a Stable ZnS/ZnO Interface. ACS Applied Materials & Interfaces, 2022, 14, 20368-20374.	4.0	18
2	A Reconstructed Cu ₂ P ₂ O ₇ Catalyst for Selective CO ₂ Electroreduction to Multicarbon Products. Angewandte Chemie, 2022, 134, .	1.6	12
3	A Reconstructed Cu ₂ P ₂ O ₇ Catalyst for Selective CO ₂ Electroreduction to Multicarbon Products. Angewandte Chemie - International Edition, 2022, 61, e202114238.	7.2	71
4	In situ Raman spectroscopy studies for electrochemical CO2 reduction over Cu catalysts. Current Opinion in Green and Sustainable Chemistry, 2022, 34, 100589.	3.2	41
5	Deciphering CO ₂ Reduction Reaction Mechanism in Aprotic Li–CO ₂ Batteries using <i>In Situ</i> Vibrational Spectroscopy Coupled with Theoretical Calculations. ACS Energy Letters, 2022, 7, 624-631.	8.8	33
6	Electrochemical synthesis of catalytic materials for energy catalysis. Chinese Journal of Catalysis, 2022, 43, 1001-1016.	6.9	23
7	In-situ exsolution of cobalt nanoparticles from La0.5Sr0.5Fe0.8Co0.2O3-Î′ cathode for enhanced CO2 electrolysis performance. Green Chemical Engineering, 2022, 3, 250-258.	3.3	7
8	Highly dispersed nickel species on iron-based perovskite for CO2 electrolysis in solid oxide electrolysis cell. Chinese Journal of Catalysis, 2022, 43, 1710-1718.	6.9	10
9	In situ reconstruction of defect-rich SnO2 through an analogous disproportionation process for CO2 electroreduction. Chemical Engineering Journal, 2022, 446, 137444.	6.6	7
10	Electrochemical CO ₂ reduction on graphdiyne: a DFT study. Green Chemistry, 2021, 23, 1212-1219.	4.6	42
11	Structure Sensitivity in Single-Atom Catalysis toward CO ₂ Electroreduction. ACS Energy Letters, 2021, 6, 713-727.	8.8	149
12	Nitrogen and Boron Coâ€Doped Carbon Spheres for Carbon Dioxide Electroreduction. ChemNanoMat, 2021, 7, 635-640.	1.5	10
13	Highâ€Rate CO ₂ Electroreduction to C ₂₊ Products over a Copperâ€Copper Iodide Catalyst. Angewandte Chemie - International Edition, 2021, 60, 14329-14333.	7.2	177
14	Reversible Cycling of Graphite Electrodes in Propylene Carbonate Electrolytes Enabled by Ethyl Isothiocyanate. ACS Applied Materials & Interfaces, 2021, 13, 26023-26033.	4.0	12
15	Highâ€Rate CO ₂ Electroreduction to C ₂₊ Products over a Copper opper Iodide Catalyst. Angewandte Chemie, 2021, 133, 14450-14454.	1.6	36
16	A vanadium-doped BSCF perovskite for CO2 electrolysis in solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2021, 46, 19814-19821.	3.8	17
17	Orthorhombic Y0.95-xSrxCo0.3Fe0.7O3-δanode for oxygen evolution reaction in solid oxide electrolysis cells. Fundamental Research, 2021, 1, 439-447.	1.6	10
18	Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6â^î^ via repeated redox manipulations for CO2 electrolysis. Nature Communications, 2021, 12, 5665.	5.8	102

#	Article	IF	CITATIONS
19	Tailoring the interactions of heterogeneous Ag2S/Ag interface for efficient CO2 electroreduction. Applied Catalysis B: Environmental, 2021, 296, 120342.	10.8	44
20	Temperatureâ€Dependent CO ₂ Electroreduction over Feâ€Nâ€C and Niâ€Nâ€C Singleâ€Atom Catal Angewandte Chemie, 2021, 133, 26786-26790.	ysts. 1.6	11
21	Temperatureâ€Dependent CO ₂ Electroreduction over Feâ€Nâ€C and Niâ€Nâ€C Singleâ€Atom Catal Angewandte Chemie - International Edition, 2021, 60, 26582-26586.	ysts. 7.2	57
22	Electrochemical CO ₂ Reduction Reaction on 3d Transition Metal Single-Atom Catalysts Supported on Graphdiyne: A DFT Study. Journal of Physical Chemistry C, 2021, 125, 26013-26020.	1.5	38
23	Effect of iron precursor on the activity and stability of PtFe/C catalyst for oxygen reduction reaction. Journal of Alloys and Compounds, 2020, 814, 152212.	2.8	19
24	In Situ Investigation of Reversible Exsolution/Dissolution of CoFe Alloy Nanoparticles in a Coâ€Doped Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â°'} <i>_{1´}</i> Cathode for CO ₂ Electrolysis. Advanced Materials, 2020, 32, e1906193.	11.1	185
25	Advances and challenges in electrochemical CO ₂ reduction processes: an engineering and design perspective looking beyond new catalyst materials. Journal of Materials Chemistry A, 2020, 8, 1511-1544.	5.2	305
26	Doped Zeroâ€Dimensional Cesium Zinc Halides for Highâ€Efficiency Blue Light Emission. Angewandte Chemie - International Edition, 2020, 59, 21414-21418.	7.2	97
27	CO2 electrolysis at industrial current densities using anion exchange membrane based electrolyzers. Science China Chemistry, 2020, 63, 1711-1715.	4.2	25
28	Enhancing CO 2 Electroreduction to Methane with a Cobalt Phthalocyanine and Zinc–Nitrogen–Carbon Tandem Catalyst. Angewandte Chemie, 2020, 132, 22594-22599.	1.6	12
29	Enhancing CO ₂ Electroreduction to Methane with a Cobalt Phthalocyanine and Zinc–Nitrogen–Carbon Tandem Catalyst. Angewandte Chemie - International Edition, 2020, 59, 22408-22413.	7.2	145
30	A significant breakthrough in electrocatalytic reduction of CO2 to ethylene and ethanol. Science China Chemistry, 2020, 63, 1023-1024.	4.2	3
31	Atomicâ€Scale Insight into Exsolution of CoFe Alloy Nanoparticles in La 0.4 Sr 0.6 Co 0.2 Fe 0.7 Mo 0.1 O 3â°' Î′ with Efficient CO 2 Electrolysis. Angewandte Chemie, 2020, 132, 16102-16107.	1.6	4
32	Copper-indium bimetallic catalysts for the selective electrochemical reduction of carbon dioxide. Chinese Journal of Catalysis, 2020, 41, 1393-1400.	6.9	42
33	Platinumâ€Decorated Ceria Enhances CO ₂ Electroreduction in Solid Oxide Electrolysis Cells. ChemSusChem, 2020, 13, 6290-6295.	3.6	25
34	Pd single site-anchored perovskite cathode for CO2 electrolysis in solid oxide electrolysis cells. Nano Energy, 2020, 71, 104598.	8.2	39
35	Atomic-Level Construction of Tensile-Strained PdFe Alloy Surface toward Highly Efficient Oxygen Reduction Electrocatalysis. Nano Letters, 2020, 20, 1403-1409.	4.5	89
36	In Situ Reconstruction of a Hierarchical Snâ€Cu/SnO _{<i>x</i>} Core/Shell Catalyst for Highâ€Performance CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2020, 59, 4814-4821.	7.2	270

#	Article	IF	CITATIONS
37	Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity. Science Bulletin, 2020, 65, 711-719.	4.3	142
38	In Situ Reconstruction of a Hierarchical Snâ€Cu/SnO _{<i>x</i>} Core/Shell Catalyst for Highâ€Performance CO ₂ Electroreduction. Angewandte Chemie, 2020, 132, 4844-4851.	1.6	29
39	Atomicâ€Scale Insight into Exsolution of CoFe Alloy Nanoparticles in La _{0.4} Sr _{0.6} Co _{0.2} Fe _{0.7} Mo _{0.1} O _{3â^'<i>δ<!--<br-->with Efficient CO₂ Electrolysis. Angewandte Chemie - International Edition, 2020, 59, 15968-15973.</i>}	i>	94
40	Designing Electrolyzers for Electrocatalytic CO ₂ Reduction. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	15
41	Synergistic Catalysis over Ironâ€Nitrogen Sites Anchored with Cobalt Phthalocyanine for Efficient CO ₂ Electroreduction. Advanced Materials, 2019, 31, e1903470.	11.1	256
42	Highâ€Temperature CO ₂ Electrolysis in Solid Oxide Electrolysis Cells: Developments, Challenges, and Prospects. Advanced Materials, 2019, 31, e1902033.	11.1	237
43	Photo- and thermo-coupled electrocatalysis in carbon dioxide and methane conversion. Science China Materials, 2019, 62, 1369-1373.	3.5	25
44	Interfacial Enhancement by γâ€Al ₂ O ₃ of Electrochemical Oxidative Dehydrogenation of Ethane to Ethylene in Solid Oxide Electrolysis Cells. Angewandte Chemie - International Edition, 2019, 58, 16043-16046.	7.2	31
45	Interfacial Enhancement by γâ€Al 2 O 3 of Electrochemical Oxidative Dehydrogenation of Ethane to Ethylene in Solid Oxide Electrolysis Cells. Angewandte Chemie, 2019, 131, 16189-16192.	1.6	9
46	Construction of a sp ³ /sp ² Carbon Interface in 3D Nâ€Doped Nanocarbons for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 15233-15241.	1.6	49
47	Construction of a sp ³ /sp ² Carbon Interface in 3D Nâ€Doped Nanocarbons for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 15089-15097.	7.2	215
48	Improving the performance of solid oxide electrolysis cell with gold nanoparticles-modified LSM-YSZ anode. Journal of Energy Chemistry, 2019, 35, 181-187.	7.1	23
49	<i>In situ</i> exsolved FeNi ₃ nanoparticles on nickel doped Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â[^]î} perovskite for efficient electrochemical CO ₂ reduction reaction. Journal of Materials Chemistry A, 2019, 7, 11967-11975.	5.2	159
50	Oxygen Evolution Reaction over the Au/YSZ Interface at High Temperature. Angewandte Chemie - International Edition, 2019, 58, 4617-4621.	7.2	33
51	Oxygen Evolution Reaction over the Au/YSZ Interface at High Temperature. Angewandte Chemie, 2019, 131, 4665-4669.	1.6	12
52	Infiltration of Ce0.8Gd0.2O1.9 nanoparticles on Sr2Fe1.5Mo0.5O6- cathode for CO2 electroreduction in solid oxide electrolysis cell. Journal of Energy Chemistry, 2019, 35, 71-78.	7.1	85
53	Transition metal-nitrogen sites for electrochemical carbon dioxide reduction reaction. Chinese Journal of Catalysis, 2019, 40, 23-37.	6.9	62
54	Improving CO2 electroreduction over ZIF-derived carbon doped with Fe-N sites by an additional ammonia treatment. Catalysis Today, 2019, 330, 252-258.	2.2	35

#	Article	IF	CITATIONS
55	Introduction of carbon–boron atomic groups as an efficient strategy to boost formic acid production toward CO ₂ electrochemical reduction. Chemical Communications, 2018, 54, 3367-3370.	2.2	24
56	Promoting oxygen evolution reaction by RuO2 nanoparticles in solid oxide CO2 electrolyzer. Energy Storage Materials, 2018, 13, 207-214.	9.5	27
57	Oxygen Vacancies in ZnO Nanosheets Enhance CO ₂ Electrochemical Reduction to CO. Angewandte Chemie, 2018, 130, 6162-6167.	1.6	122
58	Oxygen Vacancies in ZnO Nanosheets Enhance CO ₂ Electrochemical Reduction to CO. Angewandte Chemie - International Edition, 2018, 57, 6054-6059.	7.2	564
59	Enhancing electrocatalytic CO2 reduction in solid oxide electrolysis cell with Ce0.9Mn0.1O2â^î´ nanoparticles-modified LSCM-GDC cathode. Journal of Catalysis, 2018, 359, 8-16.	3.1	92
60	Pd-Containing Nanostructures for Electrochemical CO ₂ Reduction Reaction. ACS Catalysis, 2018, 8, 1510-1519.	5.5	261
61	CO-tolerant PtRu@h-BN/C core–shell electrocatalysts for proton exchange membrane fuel cells. Applied Surface Science, 2018, 450, 244-250.	3.1	28
62	Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell. Nano Energy, 2018, 50, 43-51.	8.2	158
63	Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO ₂ electroreduction. Energy and Environmental Science, 2018, 11, 1204-1210.	15.6	622
64	Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells. Nano Research, 2018, 11, 3490-3498.	5.8	32
65	Selective CO ₂ electroreduction over an oxide-derived gallium catalyst. Journal of Materials Chemistry A, 2018, 6, 19743-19749.	5.2	22
66	Recent Advances in the Electro-Oxidation of Urea for Direct Urea Fuel Cell and Urea Electrolysis. Topics in Current Chemistry, 2018, 376, 42.	3.0	140
67	Pure CO ₂ electrolysis over an Ni/YSZ cathode in a solid oxide electrolysis cell. Journal of Materials Chemistry A, 2018, 6, 13661-13667.	5.2	77
68	Effect of Gd 0.2 Ce 0.8 O 1.9 nanoparticles on the oxygen evolution reaction of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3- δanode in solid oxide electrolysis cell. Chinese Journal of Catalysis, 2018, 39, 1484-1492.	6.9	20
69	Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(II) center in ZIFs. Nano Energy, 2018, 52, 345-350.	8.2	121
70	(La0.75Sr0.25)0.95(Cr0.5Mn0.5)O3-δ-Ce0.8Gd0.2O1.9 scaffolded composite cathode for high temperature CO2 electroreduction in solid oxide electrolysis cell. Journal of Power Sources, 2018, 400, 104-113.	4.0	68
71	Effect of metal deposition sequence in carbon-supported Pd–Pt catalysts on activity towards CO2 electroreduction to formate. Electrochemistry Communications, 2017, 76, 1-5.	2.3	32
72	Highly CO tolerant PtRu/PtNi/C catalyst for polymer electrolyte membrane fuel cell. RSC Advances, 2017, 7, 8453-8459.	1.7	17

#	Article	IF	CITATIONS
73	Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction. Nano Energy, 2017, 38, 281-289.	8.2	301
74	Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Research, 2017, 10, 2181-2191.	5.8	208
75	Enhancing CO ₂ Electroreduction with the Metal–Oxide Interface. Journal of the American Chemical Society, 2017, 139, 5652-5655.	6.6	468
76	Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. Current Opinion in Green and Sustainable Chemistry, 2017, 3, 39-44.	3.2	51
77	Electrochemical promotion of catalysis over Pd nanoparticles for CO ₂ reduction. Chemical Science, 2017, 8, 2569-2573.	3.7	72
78	Two-Dimensional Mesoporous Carbon Doped with Fe–N Active Sites for Efficient Oxygen Reduction. ACS Catalysis, 2017, 7, 7638-7646.	5.5	90
79	Nitrogen-doped carbon nanotube encapsulating cobalt nanoparticles towards efficient oxygen reduction for zinc–air battery. Journal of Energy Chemistry, 2017, 26, 1181-1186.	7.1	47
80	Boosting CO ₂ electroreduction over layered zeolitic imidazolate frameworks decorated with Ag ₂ O nanoparticles. Journal of Materials Chemistry A, 2017, 5, 19371-19377.	5.2	61
81	Two-step pyrolysis of ZIF-8 functionalized with ammonium ferric citrate for efficient oxygen reduction reaction. Journal of Energy Chemistry, 2017, 26, 1174-1180.	7.1	30
82	Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: Recent advance in cathodes. Journal of Energy Chemistry, 2017, 26, 839-853.	7.1	125
83	Electrochemically synthesized freestanding 3D nanoporous silver electrode with high electrocatalytic activity. Catalysis Science and Technology, 2016, 6, 7163-7171.	2.1	18
84	Electrocatalytic reduction of carbon dioxide over reduced nanoporous zinc oxide. Electrochemistry Communications, 2016, 68, 67-70.	2.3	93
85	Oneâ€Pot Synthesis of Highly Anisotropic Fiveâ€Foldâ€Twinned PtCu Nanoframes Used as a Bifunctional Electrocatalyst for Oxygen Reduction and Methanol Oxidation. Advanced Materials, 2016, 28, 8712-8717.	11.1	336
86	High-performance bifunctional oxygen electrocatalyst derived from iron and nickel substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer. Nano Energy, 2016, 30, 801-809.	8.2	46
87	Highly doped and exposed Cu(<scp>i</scp>)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy and Environmental Science, 2016, 9, 3736-3745.	15.6	374
88	Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy, 2016, 27, 35-43.	8.2	211
89	Silicon carbide-supported iron nanoparticles encapsulated in nitrogen-doped carbon for oxygen reduction reaction. Catalysis Science and Technology, 2016, 6, 2949-2954.	2.1	14
90	Size-Dependent Electrocatalytic Reduction of CO ₂ over Pd Nanoparticles. Journal of the American Chemical Society, 2015, 137, 4288-4291.	6.6	929

#	Article	IF	CITATIONS
91	High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery. Nano Energy, 2015, 13, 387-396.	8.2	311
92	pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles. Electrochemistry Communications, 2015, 55, 1-5.	2.3	54
93	Ball-milling MoS 2 /carbon black hybrid material for catalyzing hydrogen evolution reaction in acidic medium. Journal of Energy Chemistry, 2015, 24, 608-613.	7.1	20
94	Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Research, 2014, 7, 1519-1527.	5.8	44
95	Gas-phase electrocatalytic reduction of carbon dioxide using electrolytic cell based on phosphoric acid-doped polybenzimidazole membrane. Journal of Energy Chemistry, 2014, 23, 694-700.	7.1	27
96	Synthesis of Fe/Fe3C nanoparticles encapsulated in nitrogen-doped carbon with single-source molecular precursor for the oxygen reduction reaction. Carbon, 2014, 75, 381-389.	5.4	101
97	Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis. Journal of Materials Chemistry A, 2014, 2, 20067-20074.	5.2	231
98	Graphene-supported iron-based nanoparticles encapsulated in nitrogen-doped carbon as a synergistic catalyst for hydrogen evolution and oxygen reduction reactions. Faraday Discussions, 2014, 176, 135-151.	1.6	57
99	Structure and electrochemical activity of WOx-supported PtRu catalyst using three-dimensionally ordered macroporous WO3 as the template. Journal of Power Sources, 2013, 241, 728-735.	4.0	21
100	Iron Encapsulated within Podâ€like Carbon Nanotubes for Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 371-375.	7.2	1,152
101	Investigation of grain boundary formation in PtRu/C catalyst obtained in a polyol process with post-treatment. International Journal of Hydrogen Energy, 2011, 36, 3322-3332.	3.8	18
102	Effect of Addition of SnOx to the Pt2Ru3/C Catalyst on CO Tolerance for the Polymer Electrolyte Fuel Cell. Journal of the Electrochemical Society, 2011, 158, B448.	1.3	5
103	Effect of preparation atmosphere of Pt–SnOx/C catalysts on the catalytic activity for H2/CO electro-oxidation. Applied Catalysis B: Environmental, 2010, 98, 86-93.	10.8	27
104	Particle size dependence of CO tolerance of anode PtRu catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 2010, 195, 6398-6404.	4.0	20
105	Effect of carbon black additive in Pt black cathode catalyst layer on direct methanol fuel cell performance. International Journal of Hydrogen Energy, 2010, 35, 11245-11253.	3.8	36
106	In Situ Observation of CO Oxidation by Anode PtRu/C Catalysts for Polymer Electrolyte Fuel Cells. ECS Transactions, 2010, 28, 283-288.	0.3	0
107	Prospective of Pd/MOx as Alternative Pt Anode Catalyst for Polymer Electrolyte Fuel Cell. ECS Transactions, 2010, 28, 253-258.	0.3	Ο
108	Electrochemical Characteristics of Pd Anode Catalyst Modified with TiO[sub 2] Nanoparticles in Polymer Electrolyte Fuel Cell. Journal of the Electrochemical Society, 2009, 156, B32.	1.3	13

#	Article	IF	CITATIONS
109	Structures and CO Tolerance of Anode PtRu Catalyst for Polymer Electrolyte Fuel Cells. ECS Transactions, 2009, 25, 1319-1323.	0.3	1
110	A Comparative Study of Variously Prepared Carbon-Supported Pt/MoO[sub x] Anode Catalysts for a Polymer Electrolyte Fuel Cell. Journal of the Electrochemical Society, 2009, 156, B1361.	1.3	11
111	Preparation of Well-Alloyed PtRu/C Catalyst by Sequential Mixing of the Precursors in a Polyol Method. Journal of the Electrochemical Society, 2009, 156, B1348.	1.3	11
112	Effect of SnO[sub 2] Deposition Sequence in SnO[sub 2]-Modified PtRu/C Catalyst Preparation on Catalytic Activity for Methanol Electro-Oxidation. Journal of the Electrochemical Society, 2009, 156, B862.	1.3	17
113	High performance direct ethanol fuel cell with double-layered anode catalyst layer. Journal of Power Sources, 2008, 177, 142-147.	4.0	57
114	Improving the DMFC performance with Ketjen Black EC 300J as the additive in the cathode catalyst layer. Journal of Power Sources, 2008, 180, 176-180.	4.0	34
115	The Effect of Modification of PtRu Anode Catalyst with SnO2 on CO Tolerance. ECS Transactions, 2008, 16, 713-716.	0.3	1
116	Comparative studies of configurations and preparation methods for direct methanol fuel cell electrodes. Electrochimica Acta, 2007, 52, 6763-6770.	2.6	56
117	Carbon nanofibers supported Pt–Ru electrocatalysts for direct methanol fuel cells. Carbon, 2006, 44, 152-157.	5.4	173
118	The stability of a PtRu/C electrocatalyst at anode potentials in a direct methanol fuel cell. Journal of Power Sources, 2006, 160, 933-939.	4.0	73
119	Studies on Electrocatalysts, MEAs and Compact Stacks of Direct Alcohol Fuel Cells. , 2006, , 1191.		0
120	The effect of the MEA preparation procedure on both ethanol crossover and DEFC performance. Journal of Power Sources, 2005, 140, 103-110.	4.0	86
121	Pd electroless plated Nafion® membrane for high concentration DMFCs. Journal of Membrane Science, 2005, 259, 27-33.	4.1	37
122	Electrode catalysts behavior during direct ethanol fuel cell life-time test. Electrochemistry Communications, 2005, 7, 663-668.	2.3	48
123	Improvement of direct methanol fuel cell performance by modifying catalyst coated membrane structure. Electrochemistry Communications, 2005, 7, 1007-1012.	2.3	59
124	Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells. Electrochimica Acta, 2005, 50, 2371-2376.	2.6	39
125	Performance Improvement in Direct Methanol Fuel Cell Cathode Using High Mesoporous Area Catalyst Support. Electrochemical and Solid-State Letters, 2005, 8, A12.	2.2	44
126	Preparation of highly active 40wt.% Pt/C cathode electrocatalysts for DMFC via different routes. Catalysis Today, 2004, 93-95, 523-528.	2.2	56

#	Article	IF	CITATIONS
127	Study of sintered stainless steel fiber felt as gas diffusion backing in air-breathing DMFC. Journal of Power Sources, 2004, 133, 175-180.	4.0	102
128	Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell. Chemical Communications, 2003, , 394-395.	2.2	226
129	Preparation of highly active Pt/C cathode electrocatalysts for DMFCs by an improved aqueous impregnation method. Physical Chemistry Chemical Physics, 2003, 5, 5485.	1.3	48