
Chunling Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4986109/publications.pdf Version: 2024-02-01

CHUNUNG HUANG

#	Article	IF	CITATIONS
1	KCa3.1 in diabetic kidney disease. Current Opinion in Nephrology and Hypertension, 2022, 31, 129-134.	2.0	3
2	A single-domain i-body, AD-114, attenuates renal fibrosis through blockade of CXCR4. JCI Insight, 2022, 7,	5.0	5
3	Mesenchymal Stem Cell-Derived Exosomes: Toward Cell-Free Therapeutic Strategies in Chronic Kidney Disease. Frontiers in Medicine, 2022, 9, 816656.	2.6	14
4	Faecal Microbiota Transplantation and Chronic Kidney Disease. Nutrients, 2022, 14, 2528.	4.1	15
5	KCa3.1 Mediates Dysregulation of Mitochondrial Quality Control in Diabetic Kidney Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 573814.	3.7	10
6	Metformin Attenuates Renal Fibrosis in a Mouse Model of Adenine-Induced Renal Injury Through Inhibiting TGF-β1 Signaling Pathways. Frontiers in Cell and Developmental Biology, 2021, 9, 603802.	3.7	19
7	The Mitochondrial Kinase PINK1 in Diabetic Kidney Disease. International Journal of Molecular Sciences, 2021, 22, 1525.	4.1	9
8	RIPK3 blockade attenuates kidney fibrosis in a folic acid model of renal injury. FASEB Journal, 2020, 34, 10286-10298.	0.5	20
9	RIPK3 blockade attenuates tubulointerstitial fibrosis in a mouse model of diabetic nephropathy. Scientific Reports, 2020, 10, 10458.	3.3	24
10	RIPK3: A New Player in Renal Fibrosis. Frontiers in Cell and Developmental Biology, 2020, 8, 502.	3.7	12
11	MicroRNA as novel biomarkers and therapeutic targets in diabetic kidney disease: An update. FASEB BioAdvances, 2019, 1, 375-388.	2.4	25
12	Metformin attenuates folicâ€acid induced renal fibrosis in mice. Journal of Cellular Physiology, 2018, 233, 7045-7054.	4.1	23
13	The KCa3.1 blocker TRAM34 reverses renal damage in a mouse model of established diabetic nephropathy. PLoS ONE, 2018, 13, e0192800.	2.5	15
14	Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway. Scientific Reports, 2016, 6, 29196.	3.3	106
15	KCa3.1 mediates dysfunction of tubular autophagy in diabetic kidneys via PI3k/Akt/mTOR signaling pathways. Scientific Reports, 2016, 6, 23884.	3.3	60
16	KCa3.1. Current Opinion in Nephrology and Hypertension, 2015, 24, 61-66.	2.0	9
17	High Glucose Induces CCL20 in Proximal Tubular Cells via Activation of the KCa3.1 Channel. PLoS ONE, 2014, 9, e95173.	2.5	17
18	Inhibition of Kidney Proximal Tubular Glucose Reabsorption Does Not Prevent against Diabetic Nephropathy in Type 1 Diabetic eNOS Knockout Mice. PLoS ONE, 2014, 9, e108994.	2.5	58

CHUNLING HUANG

#	Article	IF	CITATIONS
19	KCa3.1 mediates activation of fibroblasts in diabetic renal interstitial fibrosis. Nephrology Dialysis Transplantation, 2014, 29, 313-324.	0.7	44
20	Inhibition of KCa3.1 suppresses TGF-β1 induced MCP-1 expression in human proximal tubular cells through Smad3, p38 and ERK1/2 signaling pathways. International Journal of Biochemistry and Cell Biology, 2014, 47, 1-10.	2.8	27
21	Thioredoxin-interacting protein mediates dysfunction of tubular autophagy in diabetic kidneys through inhibiting autophagic flux. Laboratory Investigation, 2014, 94, 309-320.	3.7	50
22	Blockade of KCa3.1 Ameliorates Renal Fibrosis Through the TGF-β1/Smad Pathway in Diabetic Mice. Diabetes, 2013, 62, 2923-2934.	0.6	77
23	Up-regulation and clinical relevance of novel helicase homologue DHX32 in colorectal cancer. Journal of Experimental and Clinical Cancer Research, 2009, 28, 11.	8.6	15