
Laurent Mosoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4985731/publications.pdf Version: 2024-02-01

LAUDENT MOSONI

#	Article	IF	CITATIONS
1	Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia. Journal of Physiology, 2006, 575, 305-315.	1.3	337
2	Protein pulse feeding improves protein retention in elderly women. American Journal of Clinical Nutrition, 1999, 69, 1202-1208.	2.2	249
3	Skeletal muscle proteolysis in aging. Current Opinion in Clinical Nutrition and Metabolic Care, 2009, 12, 37-41.	1.3	129
4	Muscle Wasting and Resistance of Muscle Anabolism: The "Anabolic Threshold Concept―for Adapted Nutritional Strategies during Sarcopenia. Scientific World Journal, The, 2012, 2012, 1-6.	0.8	124
5	Postprandial whole-body protein metabolism after a meat meal is influenced by chewing efficiency in elderly subjects. American Journal of Clinical Nutrition, 2007, 85, 1286-1292.	2.2	115
6	Antioxidant Supplementation Restores Defective Leucine Stimulation of Protein Synthesis in Skeletal Muscle from Old Rats. Journal of Nutrition, 2008, 138, 2205-2211.	1.3	100
7	Presence of low-grade inflammation impaired postprandial stimulation of muscle protein synthesis in old rats. Journal of Nutritional Biochemistry, 2010, 21, 325-331.	1.9	84
8	Differential variation of mitochondrial H2O2 release during aging in oxidative and glycolytic muscles in rats. Mechanisms of Ageing and Development, 2004, 125, 367-373.	2.2	57
9	Age-related changes in glutathione availability and skeletal muscle carbonyl content in healthy rats. Experimental Gerontology, 2004, 39, 203-210.	1.2	51
10	Age-related changes in protein synthesis measured in vivo in rat liver and gastrocnemius muscle. Mechanisms of Ageing and Development, 1993, 68, 209-220.	2.2	43
11	Chronic Intake of Sucrose Accelerates Sarcopenia in Older Male Rats through Alterations in Insulin Sensitivity and Muscle Protein Synthesis1–3. Journal of Nutrition, 2015, 145, 923-930.	1.3	36
12	Antioxidant supplementation had positive effects in old rat muscle, but through better oxidative status in other organs. Nutrition, 2010, 26, 1157-1162.	1.1	28
13	Muscle and Liver Protein Synthesis Adapt Efficiently to Food Deprivation and Refeeding in 12-Month-Old Rats. Journal of Nutrition, 1996, 126, 516-522.	1.3	27
14	Impaired Skeletal Muscle Branched-Chain Amino Acids Catabolism Contributes to Their Increased Circulating Levels in a Non-Obese Insulin-Resistant Fructose-Fed Rat Model. Nutrients, 2019, 11, 355.	1.7	25
15	Time Course of Molecular and Metabolic Events in the Development of Insulin Resistance in Fructose-Fed Rats. Journal of Proteome Research, 2016, 15, 1862-1874.	1.8	20
16	A meal with mixed soy/whey proteins is as efficient as a whey meal in counteracting the age-related muscle anabolic resistance only if the protein content and leucine levels are increased. Food and Function, 2018, 9, 6526-6534.	2.1	20
17	Important determinants to take into account to optimize protein nutrition in the elderly: solutions to a complex equation. Proceedings of the Nutrition Society, 2021, 80, 207-220.	0.4	20
18	Protein feeding pattern, casein feeding, or milk-soluble protein feeding did not change the evolution of body composition during a short-term weight loss program. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E973-E982.	1.8	19

LAURENT MOSONI

#	Article	IF	CITATIONS
19	Similarities and interactions between the ageing process and high chronic intake of added sugars. Nutrition Research Reviews, 2017, 30, 191-207.	2.1	18
20	High Whey Protein Intake Delayed the Loss of Lean Body Mass in Healthy Old Rats, whereas Protein Type and Polyphenol/Antioxidant Supplementation Had No Effects. PLoS ONE, 2014, 9, e109098.	1.1	18
21	Excessive Energy Intake Does Not Modify Fedâ€state Tissue Protein Synthesis Rates in Adult Rats. Obesity, 2009, 17, 1348-1355.	1.5	16
22	Type and timing of protein feeding to optimize anabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2003, 6, 301-306.	1.3	12
23	Assessment of protein modifications in liver of rats under chronic treatment with paracetamol (acetaminophen) using two complementary mass spectrometry-based metabolomic approaches. Journal of Proteomics, 2015, 120, 194-203.	1.2	10
24	Commentaries on Viewpoint: Muscle atrophy is not always sarcopenia. Journal of Applied Physiology, 2012, 113, 680-684.	1.2	7
25	At same leucine intake, a whey/plant protein blend is not as effective as whey to initiate a transient post prandial muscle anabolic response during a catabolic state in mini pigs. PLoS ONE, 2017, 12, e0186204.	1.1	7
26	The Nature of the Ingested Protein Has No Effect on Lean Body Mass During Energy Restriction in Overweight Rats. Obesity, 2011, 19, 1137-1144.	1.5	6
27	Effects of nutritional state, aging and high chronic intake of sucrose on brain protein synthesis in rats: modulation of it by rutin and other micronutrients. Food and Function, 2018, 9, 2922-2930.	2.1	5
28	Spreading intake of a leucine-rich fast protein in energy-restricted overweight rats does not improve protein mass. Nutrition, 2012, 28, 566-571.	1.1	4
29	Effect of high chronic intake of sucrose on liver metabolism in aging rats. Modulation by rutin and micronutrients. Journal of Physiology and Biochemistry, 2018, 74, 569-577.	1.3	3
30	Fructose Feeding during the Postabsorptive State Alters Body Composition and Spares Nitrogen in Protein-Energy-Restricted Old Rats. Journal of Nutrition, 2018, 148, 40-48.	1.3	2
31	Le métabolisme protéique musculaire, contrÃ1e nutritionnel. Nutrition Clinique Et Metabolisme, 2014, 28, 29-37.	0.2	1
32	Post Meal Energy Boluses Do Not Increase the Duration of Muscle Protein Synthesis Stimulation in Two Anabolic Resistant Situations. Nutrients, 2019, 11, 727.	1.7	1
33	Muscle Wasting and Resistance of Muscle Anabolism: The "Anabolic Threshold Concept―for Adapted Nutritional Strategies during Sarcopenia. , 2016, , 209-220.		0
34	Quels sont les déterminants importants à prendre en compte pour optimiser la nutrition protéique chez les personnes âgéesÂ: une équation complexe mais avec des solutions. Cahiers De Nutrition Et De Dietetique, 2021, 56, 333-333.	0.2	0