List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4985570/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gated Spiking Neural P Systems for Time Series Forecasting. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 6227-6236.	11.3	13
2	MAREX: A general purpose hardware architecture for membrane computing. Information Sciences, 2022, 584, 360-386.	6.9	3
3	A new P-Lingua toolkit for agile development in membrane computing. Information Sciences, 2022, 587, 1-22.	6.9	7
4	Medical Image Fusion Method Based on Coupled Neural P Systems in Nonsubsampled Shearlet Transform Domain. International Journal of Neural Systems, 2021, 31, 2050050.	5.2	68
5	Spiking Neural P Systems with Extended Channel Rules. International Journal of Neural Systems, 2021, 31, 2050049.	5.2	22
6	Membrane Computing Models: Implementations. , 2021, , .		28
7	Search by triplet: An efficient local track reconstruction algorithm for parallel architectures. Journal of Computational Science, 2021, 54, 101422.	2.9	2
8	Dendrite P Systems Toolbox: Representation, Algorithms and Simulators. International Journal of Neural Systems, 2021, 31, 2050071.	5.2	11
9	Correction to: Membrane Computing Models: Implementations. , 2021, , C1-C1.		0
10	When object production tunes the efficiency of membrane systems. Theoretical Computer Science, 2020, 805, 218-231.	0.9	3
11	Spiking neural P systems with inhibitory rules. Knowledge-Based Systems, 2020, 188, 105064.	7.1	72
12	Nonlinear Spiking Neural P Systems. International Journal of Neural Systems, 2020, 30, 2050008.	5.2	64
13	Seeking computational efficiency boundaries: the Păun's conjecture. Journal of Membrane Computing, 2020, 2, 323-331.	1.8	6
14	Dendrite P systems. Neural Networks, 2020, 127, 110-120.	5.9	53
15	A Fast Local Algorithm for Track Reconstruction on Parallel Architectures. , 2019, , .		4
16	Design of Specific P Systems Simulators on GPUs. Lecture Notes in Computer Science, 2019, , 202-207.	1.3	3
17	P systems with proteins: a new frontier when membrane division disappears. Journal of Membrane Computing, 2019, 1, 29-39.	1.8	20
18	Minimal cooperation as a way to achieve the efficiency in cell-like membrane systems. Journal of Membrane Computing, 2019, 1, 85-92.	1.8	25

#	Article	IF	CITATIONS
19	Membrane Creation in Polarizationless P Systems with Active Membranes. Fundamenta Informaticae, 2019, 171, 297-311.	0.4	6
20	A path to computational efficiency through membrane computing. Theoretical Computer Science, 2019, 777, 443-453.	0.9	13
21	Dynamic threshold neural P systems. Knowledge-Based Systems, 2019, 163, 875-884.	7.1	95
22	Results on Computational Complexity in Bio-inspired Computing. , 2019, , 33-73.		1
23	From distribution to replication in cooperative systems with active membranes: A frontier of the efficiency. Theoretical Computer Science, 2018, 736, 15-24.	0.9	3
24	On GPU-Oriented P Systems. , 2018, , .		0
25	The role of integral membrane proteins in computational complexity theory. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2018, 10, 193-202.	1.1	3
26	A Kernel-Based Membrane Clustering Algorithm. Lecture Notes in Computer Science, 2018, , 318-329.	1.3	1
27	Membrane Computing as a Modelling Tool: Looking Back and Forward from Sevilla. Lecture Notes in Computer Science, 2018, , 114-129.	1.3	3
28	Counting Membrane Systems. Lecture Notes in Computer Science, 2018, , 74-87.	1.3	1
29	Multiobjective fuzzy clustering approach based on tissue-like membrane systems. Knowledge-Based Systems, 2017, 125, 74-82.	7.1	63
30	Reaching efficiency through collaboration in membrane systems: Dissolution, polarization and cooperation. Theoretical Computer Science, 2017, 701, 226-234.	0.9	16
31	Fuzzy reasoning spiking neural P systems revisited: A formalization. Theoretical Computer Science, 2017, 701, 216-225.	0.9	1
32	Computational Efficiency of Minimal Cooperation and Distribution in Polarizationless P Systems with Active Membranes. Fundamenta Informaticae, 2017, 153, 147-172.	0.4	19
33	Cooperation in Transport of Chemical Substances: A Complexity Approach within Membrane Computing. Fundamenta Informaticae, 2017, 154, 373-385.	0.4	4
34	Fault diagnosis of power systems using fuzzy tissue-like P systems. Integrated Computer-Aided Engineering, 2017, 24, 401-411.	4.6	42
35	An Extended Membrane System with Active Membranes to Solve Automatic Fuzzy Clustering Problems. International Journal of Neural Systems, 2016, 26, 1650004.	5.2	49
36	An unsupervised learning algorithm for membrane computing. Information Sciences, 2015, 304, 80-91.	6.9	71

#	Article	IF	CITATIONS
37	Membrane fission versus cell division: When membrane proliferation is not enough. Theoretical Computer Science, 2015, 608, 57-65.	0.9	15
38	Simulating P Systems on GPU Devices: A Survey. Fundamenta Informaticae, 2015, 136, 269-284.	0.4	32
39	An automatic clustering algorithm inspired by membrane computing. Pattern Recognition Letters, 2015, 68, 34-40.	4.2	50
40	A New Strategy to Improve the Performance of PDP-Systems Simulators. Lecture Notes in Computer Science, 2015, , 171-184.	1.3	0
41	Sevilla Carpets Revisited: Enriching the Membrane Computing Toolbox. Fundamenta Informaticae, 2014, 134, 153-166.	0.4	1
42	Enjoying to Work. Fundamenta Informaticae, 2014, 134, v-vi.	0.4	0
43	The framework of P systems applied to solve optimal watermarking problem. Signal Processing, 2014, 101, 256-265.	3.7	23
44	The Relevance of the Environment on the Efficiency of Tissue P Systems. Lecture Notes in Computer Science, 2014, , 308-321.	1.3	1
45	Accelerated Simulation of P Systems on the GPU: A Survey. Communications in Computer and Information Science, 2014, , 308-312.	0.5	8
46	Tissue P Systems with Cell Division. International Journal of Computers, Communications and Control, 2014, 3, 295.	1.8	95
47	P Systems Computing the Period of Irreducible Markov Chains. International Journal of Computers, Communications and Control, 2014, 4, 291.	1.8	Ο
48	SPECIAL ISSUE ON MEMBRANE COMPUTING, Seventh Brainstorming Week on Membrane Computing. International Journal of Computers, Communications and Control, 2014, 4, 204.	1.8	0
49	A formalization of membrane systems with dynamically evolving structures. International Journal of Computer Mathematics, 2013, 90, 801-815.	1.8	12
50	A polynomial alternative to unbounded environment for tissue P systems with cell division. International Journal of Computer Mathematics, 2013, 90, 760-775.	1.8	14
51	RESEARCH FRONTIERS OF MEMBRANE COMPUTING: OPEN PROBLEMS AND RESEARCH TOPICS. International Journal of Foundations of Computer Science, 2013, 24, 547-623.	1.1	48
52	The Efficiency of Tissue P Systems with Cell Separation Relies on the Environment. Lecture Notes in Computer Science, 2013, , 243-256.	1.3	10
53	Comparing simulation algorithms for multienvironment probabilistic P systems over a standard virtual ecosystem. Natural Computing, 2012, 11, 369-379.	3.0	19
54	A P–Lingua Based Simulator for Spiking Neural P Systems. Lecture Notes in Computer Science, 2012, , 257-281.	1.3	22

#	Article	IF	CITATIONS
55	Looking for Small Efficient P Systems. Fundamenta Informaticae, 2011, 110, 295-308.	0.4	Ο
56	A software tool for generating graphics by means of P systems. Natural Computing, 2011, 10, 879-890.	3.0	6
57	A SIMULATION ALGORITHM FOR MULTIENVIRONMENT PROBABILISTIC P SYSTEMS: A FORMAL VERIFICATION. International Journal of Foundations of Computer Science, 2011, 22, 107-118.	1.1	13
58	ON A PARTIAL AFFIRMATIVE ANSWER FOR A PÄ,UN'S CONJECTURE. International Journal of Foundations of Computer Science, 2011, 22, 55-64.	1.1	4
59	Current Developments on Computational Modeling Using P Systems. Lecture Notes in Computer Science, 2011, , 250-251.	1.3	Ο
60	A Linear Time Solution to the Partition Problem in a Cellular Tissue-Like Model. Journal of Computational and Theoretical Nanoscience, 2010, 7, 884-889.	0.4	9
61	A P-Lingua based simulator for tissue P systems. The Journal of Logic and Algebraic Programming, 2010, 79, 374-382.	1.4	18
62	MeCoSim: A general purpose software tool for simulating biological phenomena by means of P systems. , 2010, , .		31
63	A new simulation algorithm for multienvironment probabilistic P systems. , 2010, , .		9
64	Simulating tritrophic interactions by means of P systems. , 2010, , .		2
65	A uniform framework for modeling based on P systems. , 2010, , .		7
66	An Overview of P-Lingua 2.0. Lecture Notes in Computer Science, 2010, , 264-288.	1.3	46
67	On the efficiency of cell-like and tissue-like recognizing membrane systems. International Journal of Intelligent Systems, 2009, 24, 747-765.	5.7	2
68	A Framework for Complexity Classes in Membrane Computing. Electronic Notes in Theoretical Computer Science, 2009, 225, 319-328.	0.9	1
69	A P-Lingua Programming Environment for Membrane Computing. Lecture Notes in Computer Science, 2009, , 187-203.	1.3	33
70	Membrane Dissolution and Division in P. Lecture Notes in Computer Science, 2009, , 262-276.	1.3	7
71	Descriptional Complexity of Tissue-Like P Systems with Cell Division. Lecture Notes in Computer Science, 2009, , 168-178.	1.3	0
72	Membrane systems with proteins embedded in membranes. Theoretical Computer Science, 2008, 404, 26-39.	0.9	14

#	Article	IF	CITATIONS
73	A uniform family of tissue P systems with cell division solving 3-COL in a linear time. Theoretical Computer Science, 2008, 404, 76-87.	0.9	62
74	A fast solution to the partition problem by using tissue-like P systems. , 2008, , .		3
75	How to express tumours using membrane systems. Progress in Natural Science: Materials International, 2007, 17, 449-457.	4.4	2
76	On the degree of parallelism in membrane systems. Theoretical Computer Science, 2007, 372, 183-195.	0.9	9
77	Membrane Systems with Marked Membranes. Electronic Notes in Theoretical Computer Science, 2007, 171, 25-36.	0.9	13
78	A Linear–time Tissue P System Based Solution for the 3–coloring Problem. Electronic Notes in Theoretical Computer Science, 2007, 171, 81-93.	0.9	34
79	Solving Subset Sum in Linear Time by Using Tissue P Systems with Cell Division. Lecture Notes in Computer Science, 2007, , 170-179.	1.3	26
80	A Logarithmic Bound for Solving Subset Sum with P Systems. , 2007, , 257-270.		4
81	Computational efficiency of dissolution rules in membrane systems. International Journal of Computer Mathematics, 2006, 83, 593-611.	1.8	26
82	Membrane division, restricted membrane creation and object complexity in P systems. International Journal of Computer Mathematics, 2006, 83, 529-547.	1.8	5
83	Available Membrane Computing Software. , 2006, , 411-436.		13
84	CHARACTERIZING TRACTABILITY BY CELL-LIKE MEMBRANE SYSTEMS. Series in Machine Perception and Artificial Intelligence, 2006, , 137-154.	0.1	13
85	Membrane Systems with External Control. Lecture Notes in Computer Science, 2006, , 215-232.	1.3	Ο
86	Towards a Programming Language in Cellular Computing. Electronic Notes in Theoretical Computer Science, 2005, 123, 93-110.	0.9	10
87	A fast P system for finding a balanced 2-partition. Soft Computing, 2005, 9, 673-678.	3.6	44
88	Solving the Subset-Sum problem by P systems with active membranes. New Generation Computing, 2005, 23, 339-356.	3.3	43
89	Characterizing tractability with membrane creation. , 2005, , .		2
90	One and two polarizations, membrane creation and objects complexity in P systems. , 2005, , .		5

90 One and two polarizations, membrane creation and objects complexity in ${\tt P}$ systems. , 2005, , .

#	Article	IF	CITATIONS
91	Exploring Computation Trees Associated with P Systems. Lecture Notes in Computer Science, 2005, , 278-286.	1.3	6
92	On Descriptive Complexity of P Systems. Lecture Notes in Computer Science, 2005, , 320-330.	1.3	8
93	Looking for Simple Common Schemes to Design Recognizer P Systems with Active Membranes That Solve Numerical Decision Problems. Lecture Notes in Computer Science, 2005, , 94-104.	1.3	0
94	Implementing in Prolog an Effective Cellular Solution to the Knapsack Problem. Lecture Notes in Computer Science, 2004, , 140-152.	1.3	8
95	P Systems with Tables of Rules. Lecture Notes in Computer Science, 2004, , 235-249.	1.3	7
96	Cellular Solutions to Some Numerical NP-Complete Problems. Advances in Web Services Research Series, 0, , 115-149.	0.0	2
97	From SAT to SAT-UNSAT using P systems with dissolution rules. Journal of Membrane Computing, 0, , 1.	1.8	3