
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4985239/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of Phosphotyrosine Peptides that Target the SH2 Domain of SOCS1 and Block Substrate Ubiquitination. ACS Chemical Biology, 2022, , .	1.6	2
2	NMR measurement of biomolecular translational and rotational motion for evaluating changes of protein oligomeric state in solution. European Biophysics Journal, 2022, 51, 193-204.	1.2	3
3	The Role of LNK (SH2B3) in the Regulation of JAK-STAT Signalling in Haematopoiesis. Pharmaceuticals, 2022, 15, 24.	1.7	11
4	TLR7 gain-of-function genetic variation causes human lupus. Nature, 2022, 605, 349-356.	13.7	208
5	Chemical Exchange of Hydroxyl Groups in Lipidic Cubic Phases Characterized by NMR. Journal of Physical Chemistry B, 2021, 125, 571-580.	1.2	5
6	Proteomic analyses reveal that immune integrins are major targets for regulation by Membraneâ€Associated Ring H (MARCH) proteins MARCH2, 3, 4 and 9. Proteomics, 2021, 21, 2000244.	1.3	3
7	The intracellular domains of the EphB6 and EphA10 receptor tyrosine pseudokinases function as dynamic signalling hubs. Biochemical Journal, 2021, 478, 3351-3371.	1.7	6
8	Dissecting the molecular control of Interleukin 6 signaling using the M1 cell line. Cytokine, 2021, 146, 155624.	1.4	1
9	Persistence of myelofibrosis treated with ruxolitinib: biology and clinical implications. Haematologica, 2021, 106, 1244-1253.	1.7	16
10	Structural and functional analysis of target recognition by the lymphocyte adaptor protein LNK. Nature Communications, 2021, 12, 6110.	5.8	6
11	Discovery of an exosite on the SOCS2-SH2 domain that enhances SH2 binding to phosphorylated ligands. Nature Communications, 2021, 12, 7032.	5.8	8
12	Ptpn6 inhibits caspase-8- and Ripk3/Mlkl-dependent inflammation. Nature Immunology, 2020, 21, 54-64.	7.0	33
13	NK cell–derived GM-CSF potentiates inflammatory arthritis and is negatively regulated by CIS. Journal of Experimental Medicine, 2020, 217, .	4.2	60
14	Physiochemical Characterization and Stability of Lipidic Cubic Phases by Solution NMR. Langmuir, 2020, 36, 6254-6260.	1.6	8
15	Heteronuclear NMR spectroscopy of proteins encapsulated in cubic phase lipids. Journal of Magnetic Resonance, 2019, 305, 146-151.	1.2	11
16	Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nature Communications, 2019, 10, 2201.	5.8	73
17	Enzymatic Characterization of Wild-Type and Mutant Janus Kinase 1. Cancers, 2019, 11, 1701.	1.7	10
18	Membrane-associated RING-CH (MARCH) proteins down-regulate cell surface expression of the interleukin-6 receptor alpha chain (IL6Rα). Biochemical Journal, 2019, 476, 2869-2882.	1.7	7

#	Article	IF	CITATIONS
19	The molecular basis of JAK/STAT inhibition by SOCS1. Nature Communications, 2018, 9, 1558.	5.8	298
20	Identification of a second binding site on the TRIM25 B30.2 domain. Biochemical Journal, 2018, 475, 429-440.	1.7	11
21	Expression and Purification of JAK1 and SOCS1 for Structural and Biochemical Studies. Methods in Molecular Biology, 2018, 1725, 267-280.	0.4	4
22	Accumulation of JAK activation loop phosphorylation is linked to type I JAK inhibitor withdrawal syndrome in myelofibrosis. Science Advances, 2018, 4, eaat3834.	4.7	39
23	The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Science, 2018, 27, 1984-2009.	3.1	485
24	Measuring translational diffusion of 15N-enriched biomolecules in complex solutions with a simplified 1H-15N HMQC-filtered BEST sequence. European Biophysics Journal, 2018, 47, 891-902.	1.2	9
25	Cortical Layer Inversion and Deregulation of Reelin Signaling in the Absence of SOCS6 and SOCS7. Cerebral Cortex, 2017, 27, bhv253.	1.6	13
26	Purification of SOCS (Suppressor of Cytokine Signaling) SH2 Domains for Structural and Functional Studies. Methods in Molecular Biology, 2017, 1555, 173-182.	0.4	7
27	TGF-Î ² and IL-6 family signalling crosstalk: an integrated model. Growth Factors, 2017, 35, 100-124.	0.5	7
28	Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling. ELife, 2017, 6, .	2.8	61
29	CIS is a potent checkpoint in NK cell–mediated tumor immunity. Nature Immunology, 2016, 17, 816-824.	7.0	289
30	JAK1 Takes a FERM Hold of Type II Cytokine Receptors. Structure, 2016, 24, 840-842.	1.6	6
31	Export of malaria proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-phosphate binding. Nature Communications, 2016, 7, 10470.	5.8	65
32	Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation. ELife, 2015, 4, .	2.8	52
33	Roquin binds microRNA-146a and Argonaute2 to regulate microRNA homeostasis. Nature Communications, 2015, 6, 6253.	5.8	59
34	Structure and Functional Characterization of the Conserved JAK Interaction Region in the Intrinsically Disordered N-Terminus of SOCS5. Biochemistry, 2015, 54, 4672-4682.	1.2	14
35	VHL: Cullin-g the Hypoxic Response. Structure, 2015, 23, 435-436.	1.6	5
36	Leukemia inhibitory factor (LIF). Cytokine and Growth Factor Reviews, 2015, 26, 533-544.	3.2	320

#	Article	IF	CITATIONS
37	Insights into the evolution of divergent nucleotide-binding mechanisms among pseudokinases revealed by crystal structures of human and mouse MLKL. Biochemical Journal, 2014, 457, 369-377.	1.7	92
38	Mechanistic insights into activation and SOCS3-mediated inhibition of myeloproliferative neoplasm-associated JAK2 mutants from biochemical and structural analyses. Biochemical Journal, 2014, 458, 395-405.	1.7	33
39	Functional characterization of c-Mpl ectodomain mutations that underlie congenital amegakaryocytic thrombocytopenia. Growth Factors, 2014, 32, 18-26.	0.5	16
40	A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties. Biochemical Journal, 2014, 457, 323-334.	1.7	241
41	Inhibition of IL-6 family cytokines by SOCS3. Seminars in Immunology, 2014, 26, 13-19.	2.7	157
42	NMR studies of interactions between Bax and BH3 domain-containing peptides in the absence and presence of CHAPS. Archives of Biochemistry and Biophysics, 2014, 545, 33-43.	1.4	11
43	Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15072-15077.	3.3	484
44	The molecular regulation of Janus kinase (JAK) activation. Biochemical Journal, 2014, 462, 1-13.	1.7	251
45	Reconstruction of an active SOCS3-based E3 ubiquitin ligase complexin vitro: identification of the active components and JAK2 and gp130 as substrates. Growth Factors, 2014, 32, 1-10.	0.5	35
46	A Two-Site Interaction Underpins TRIM25 Activation of the RIG-I Anti-Viral Response. Blood, 2014, 124, 1580-1580.	0.6	1
47	The Pseudokinase MLKL Mediates Necroptosis via a Molecular Switch Mechanism. Immunity, 2013, 39, 443-453.	6.6	958
48	Structure and function of the SPRY/B30.2 domain proteins involved in innate immunity. Protein Science, 2013, 22, 1-10.	3.1	109
49	Molecular Architecture of the Ankyrin SOCS Box Family of Cul5-Dependent E3 Ubiquitin Ligases. Journal of Molecular Biology, 2013, 425, 3166-3177.	2.0	31
50	SOCS3 binds specific receptor–JAK complexes to control cytokine signaling by direct kinase inhibition. Nature Structural and Molecular Biology, 2013, 20, 469-476.	3.6	229
51	In Vitro JAK Kinase Activity and Inhibition Assays. Methods in Molecular Biology, 2013, 967, 39-55.	0.4	16
52	In Vitro Ubiquitination of Cytokine Signaling Components. Methods in Molecular Biology, 2013, 967, 261-271.	0.4	4
53	Quantitative Analysis of JAK Binding Using Isothermal Titration Calorimetry and Surface Plasmon Resonance. Methods in Molecular Biology, 2013, 967, 57-67.	0.4	2
54	Suppression of cytokine signaling: The SOCS perspective. Cytokine and Growth Factor Reviews, 2013, 24, 241-248.	3.2	165

#	Article	IF	CITATIONS
55	Crystal structure of the TRIM25 B30.2 (PRYSPRY) domain: a key component of antiviral signalling. Biochemical Journal, 2013, 456, 231-240.	1.7	42
56	Regulation of Janus kinases by SOCS proteins. Biochemical Society Transactions, 2013, 41, 1042-1047.	1.6	62
57	Techniques to examine nucleotide binding by pseudokinases. Biochemical Society Transactions, 2013, 41, 975-980.	1.6	15
58	Suppressor of Cytokine Signaling (SOCS) 5 Utilises Distinct Domains for Regulation of JAK1 and Interaction with the Adaptor Protein Shc-1. PLoS ONE, 2013, 8, e70536.	1.1	42
59	The biology and mechanism of action of suppressor of cytokine signaling 3. Growth Factors, 2012, 30, 207-219.	0.5	101
60	Suppression of Cytokine Signaling by SOCS3: Characterization of the Mode of Inhibition and the Basis of Its Specificity. Immunity, 2012, 36, 239-250.	6.6	240
61	Neutrophils Require SHP1 To Regulate IL-1β Production and Prevent Inflammatory Skin Disease. Journal of Immunology, 2011, 186, 1131-1139.	0.4	40
62	The SPRY domain–containing SOCS box protein SPSB2 targets iNOS for proteasomal degradation. Journal of Cell Biology, 2010, 190, 129-141.	2.3	88
63	Heterodimerization of the human RNase P/MRP subunits Rpp20 and Rpp25 is a prerequisite for interaction with the P3 arm of RNase MRP RNA. Nucleic Acids Research, 2010, 38, 4052-4066.	6.5	31
64	The SPRY domain–containing SOCS box protein SPSB2 targets iNOS for proteasomal degradation. Journal of Experimental Medicine, 2010, 207, i22-i22.	4.2	0
65	Deletion of the SOCS box of suppressor of cytokine signaling 3 (SOCS3) in embryonic stem cells reveals SOCS box-dependent regulation of JAK but not STAT phosphorylation. Cellular Signalling, 2009, 21, 394-404.	1.7	57
66	The SOCS Box Encodes a Hierarchy of Affinities for Cullin5: Implications for Ubiquitin Ligase Formation and Cytokine Signalling Suppression. Journal of Molecular Biology, 2009, 387, 162-174.	2.0	117
67	Protein effective rotational correlation times from translational self-diffusion coefficients measured by PFG-NMR. Biophysical Chemistry, 2008, 136, 145-151.	1.5	36
68	Stabilization of Neurotoxic Soluble β-Sheet-Rich Conformations of the Alzheimer's Disease Amyloid-β Peptide. Biophysical Journal, 2008, 94, 2752-2766.	0.2	87
69	The SOCS Box Domain of SOCS3: Structure and Interaction with the ElonginBC-Cullin5 Ubiquitin Ligase. Journal of Molecular Biology, 2008, 381, 928-940.	2.0	91
70	Structure and Sodium Channel Activity of an Excitatory I ₁ -Superfamily Conotoxin [,] . Biochemistry, 2007, 46, 9929-9940.	1.2	78
71	Structural studies on Plasmodium vivax merozoite surface protein-1. Molecular and Biochemical Parasitology, 2007, 153, 31-40.	0.5	40
72	Structure of the Eukaryotic Initiation Factor (eIF) 5 Reveals a Fold Common to Several Translation Factors,. Biochemistry, 2006, 45, 4550-4558.	1.2	53

#	Article	IF	CITATIONS
73	The Structure of SOCS3 Reveals the Basis of the Extended SH2 Domain Function and Identifies an Unstructured Insertion That Regulates Stability. Molecular Cell, 2006, 22, 205-216.	4.5	140
74	The SPRY domain of SSB-2 adopts a novel fold that presents conserved Par-4–binding residues. Nature Structural and Molecular Biology, 2006, 13, 77-84.	3.6	72
75	Dynamics of the SPRY domain-containing SOCS box protein 2: Flexibility of key functional loops. Protein Science, 2006, 15, 2761-2772.	3.1	14
76	Resonance assignment for the N-terminal region of the eukaryotic initiation factor 5 (eIF5). Journal of Biomolecular NMR, 2006, 36, 42-42.	1.6	0
77	Secondary structure assignment of mouse SOCS3 by NMR defines the domain boundaries and identifies an unstructured insertion in the SH2 domain. FEBS Journal, 2005, 272, 6120-6130.	2.2	45
78	Letter to the Editor: Backbone 1H, 13C and 15N assignments of the 25 kDa SPRY domain-containing SOCS box protein 2 (SSB-2). Journal of Biomolecular NMR, 2005, 31, 69-70.	1.6	14
79	Bass Hepcidin Synthesis, Solution Structure, Antimicrobial Activities and Synergism, and in Vivo Hepatic Response to Bacterial Infections. Journal of Biological Chemistry, 2005, 280, 9272-9282.	1.6	179
80	Structure and Inter-domain Interactions of Domain II from the Blood-stage Malarial Protein, Apical Membrane Antigen 1. Journal of Molecular Biology, 2005, 350, 641-656.	2.0	30
81	Structural analysis of cooperative RNA binding by the La motif and central RRM domain of human La protein. Nature Structural and Molecular Biology, 2004, 11, 323-329.	3.6	128
82	Letter to the Editor: Resonance Assignment and Secondary Structure of the La Motif. Journal of Biomolecular NMR, 2004, 29, 449-450.	1.6	5
83	NovelTP53 gene mutations in tumors of Russian patients with breast cancer detected using a new solid phase chemical cleavage of mismatch method and identified by sequencing. Human Mutation, 2004, 23, 186-192.	1.1	12
84	The Use of Resolvases T4 Endonuclease VII and T7 Endonuclease I in Mutation Detection. Molecular Biotechnology, 2003, 23, 73-82.	1.3	57
85	Resonance assignment and secondary structure of an N-terminal fragment of the human La protein. Journal of Biomolecular NMR, 2003, 27, 93-94.	1.6	16
86	Structure of the C-Terminal Domain of Human La Protein Reveals a Novel RNA Recognition Motif Coupled to a Helical Nuclear Retention Element. Structure, 2003, 11, 833-843.	1.6	96
87	Chemical cleavage reactions of DNA on solid support: application in mutation detection. BMC Chemical Biology, 2003, 3, 1.	1.6	12
88	Mutations in the COL4A4 gene in thin basement membrane disease. Kidney International, 2003, 63, 447-453.	2.6	65
89	Suramin and Suramin Analogues Inhibit Merozoite Surface Protein-1 Secondary Processing and Erythrocyte Invasion by the Malaria Parasite Plasmodium falciparum. Journal of Biological Chemistry, 2003, 278, 47670-47677.	1.6	52
90	COL4A4 mutation in thin basement membrane disease previously described in Alport syndrome11See Editorial by Monnens, p. 799. Kidney International, 2001, 60, 480-483.	2.6	70

#	Article	IF	CITATIONS
91	Interaction of linear homologous DNA duplexes via Holliday junction formation. FEBS Journal, 2001, 268, 7-14.	0.2	18
92	The Use of Resolvases T4 Endonuclease VII and T7 Endonuclease I in Mutation Detection. , 2000, 152, 187-199.		2
93	Reactivity of potassium permanganate and tetraethylammonium chloride with mismatched bases and a simple mutation detection protocol. Nucleic Acids Research, 1999, 27, 1866-1874.	6.5	29
94	Mutation detection using fluorescent enzyme mismatch cleavage with T4 endonuclease VII. Electrophoresis, 1999, 20, 1162-1170.	1.3	21
95	Evolution of Transthyretin in Marsupials. FEBS Journal, 1995, 227, 396-406.	0.2	35
96	Improved strategy for mutation detection—a modification to the enzyme mismatch cleavage method. Nucleic Acids Research, 1995, 23, 5082-5084.	6.5	27