Piera Raspollini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4985026/publications.pdf

Version: 2024-02-01

516710 395702 37 1,288 16 33 citations g-index h-index papers 63 63 63 942 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The FORUM end-to-end simulator project: architecture and results. Atmospheric Measurement Techniques, 2022, 15, 573-604.	3.1	9
2	LevelÂ2 processor and auxiliary data for ESA Version 8 final full mission analysis of MIPAS measurements on ENVISAT. Atmospheric Measurement Techniques, 2022, 15, 1871-1901.	3.1	2
3	Emissivity retrievals with FORUM's end-to-end simulator: challenges and recommendations. Atmospheric Measurement Techniques, 2022, 15, 1755-1777.	3.1	4
4	The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity. Atmospheric Measurement Techniques, 2022, 15, 3377-3400.	3.1	4
5	The ESA MIPAS/Envisat level2-v8 dataset: 10 years of measurements retrieved with ORM v8.22. Atmospheric Measurement Techniques, 2021, 14, 7975-7998.	3.1	5
6	Phosgene distribution derived from MIPAS ESA v8 data: intercomparisons and trends. Atmospheric Measurement Techniques, 2021, 14, 7959-7974.	3.1	2
7	Auto-adaptive Tikhonov regularization of water vapor profiles: application to FORUM measurements. Applicable Analysis, 2020, , 1-11.	1.3	2
8	The SPARC water vapour assessment II: profile-to-profile comparisons of stratospheric and lower mesospheric water vapour data sets obtained from satellites. Atmospheric Measurement Techniques, 2019, 12, 2693-2732.	3.1	13
9	The SPARC water vapour assessment II: comparison of stratospheric and lower mesospheric water vapour time series observed from satellites. Atmospheric Measurement Techniques, 2018, 11, 4435-4463.	3.1	12
10	ACE-FTS ozone, water vapour, nitrous oxide, nitric acid, and carbon monoxide profile comparisons with MIPAS and MLS. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 186, 63-80.	2.3	43
11	The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements. Atmospheric Chemistry and Physics, 2017, 17, 14543-14558.	4.9	13
12	CCl ₄ distribution derived from MIPAS ESA v7 data: intercomparisons, trend, and lifetime estimation. Atmospheric Chemistry and Physics, 2017, 17, 10143-10162.	4.9	8
13	Comparison of the GOSAT TANSO-FTS TIR CH ₄ volume mixing ratio vertical profiles with those measured by ACE-FTS, ESA MIPAS, IMK-IAA MIPAS, and 16 NDACC stations. Atmospheric Measurement Techniques, 2017, 10, 3697-3718.	3.1	10
14	The SPARC water vapour assessment II: comparison of annual, semi-annual and quasi-biennial variations in stratospheric and lower mesospheric water vapour observed from satellites. Atmospheric Measurement Techniques, 2017, 10, 1111-1137.	3.1	24
15	Merged ozone profiles from four MIPAS processors. Atmospheric Measurement Techniques, 2017, 10, 1511-1518.	3.1	3
16	Harmonisation and diagnostics of MIPAS ESA CH ₄ and N ₂ O profiles using data assimilation. Atmospheric Measurement Techniques, 2016, 9, 5895-5909.	3.1	6
17	Phosgene in the UTLS: seasonal and latitudinal variations from MIPAS observations. Atmospheric Measurement Techniques, 2016, 9, 4655-4663.	3.1	7
18	Vertical grid of retrieved atmospheric profiles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 174, 7-13.	2.3	4

#	Article	IF	CITATIONS
19	Validation of ACE-FTS version 3.5 NO _{<i>y</i>} species profiles using correlative satellite measurements. Atmospheric Measurement Techniques, 2016, 9, 5781-5810.	3.1	25
20	The ozone climate change initiative: Comparison of four Level-2 processors for the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Remote Sensing of Environment, 2015, 162, 316-343.	11.0	20
21	Equivalence of data fusion and simultaneous retrieval. Optics Express, 2015, 23, 8476.	3.4	18
22	Past changes in the vertical distribution of ozone $\hat{a} \in \text{``Part 1:}$ Measurement techniques, uncertainties and availability. Atmospheric Measurement Techniques, 2014, 7, 1395-1427.	3.1	67
23	The average of atmospheric vertical profiles. Optics Express, 2014, 22, 24808.	3.4	10
24	Quality of MIPAS operational products. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 121, 45-55.	2.3	10
25	Ten years of MIPAS measurements with ESA Level 2 processor V6 – Part 1: Retrieval algorithm and diagnostics of the products. Atmospheric Measurement Techniques, 2013, 6, 2419-2439.	3.1	66
26	Validation of MIPAS-ENVISAT H ₂ O operational data collected between July 2002 and March 2004. Atmospheric Chemistry and Physics, 2013, 13, 5791-5811.	4.9	17
27	Validation of version-4.61 methane and nitrous oxide observed by MIPAS. Atmospheric Chemistry and Physics, 2009, 9, 413-442.	4.9	50
28	Validation of NO ₂ and NO from the Atmospheric Chemistry Experiment (ACE). Atmospheric Chemistry and Physics, 2008, 8, 5801-5841.	4.9	64
29	Validation of ACE-FTS N ₂ O measurements. Atmospheric Chemistry and Physics, 2008, 8, 4759-4786.	4.9	76
30	Validation of HNO ₃ , ClONO ₂ , and N ₂ O ₅ from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). Atmospheric Chemistry	4.9	75
31	and Physics, 2008, 8, 3529-3562. Geophysical validation of MIPAS-ENVISAT operational ozone data. Atmospheric Chemistry and Physics, 2007, 7, 4807-4867.	4.9	130
32	Technical Note: Regularization performances with the error consistency method in the case of retrieved atmospheric profiles. Atmospheric Chemistry and Physics, 2007, 7, 1435-1440.	4.9	29
33	Use of apodization in quantitative spectroscopy. Optics Letters, 2007, 32, 1329.	3.3	5
34	MIPAS level 2 operational analysis. Atmospheric Chemistry and Physics, 2006, 6, 5605-5630.	4.9	174
35	Geo-fit approach to the analysis of limb-scanning satellite measurements. Applied Optics, 2001, 40, 1872.	2.1	72
36	Mapping of temperature and line-of-sight errors in constituent retrievals for MIPAS/ENVISAT measurements. Atmospheric Environment, 2000, 34, 5329-5336.	4.1	10

#	Article	IF	CITATIONS
37	Optimized forward model and retrieval scheme for MIPAS near-real-time data processing. Applied Optics, 2000, 39, 1323.	2.1	188