Xiaoli Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4984668/publications.pdf

Version: 2024-02-01

50	2,365	23	48
papers	citations	h-index	g-index
50	50	50	3204
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Developments of spectroscopic biosensors for cholinesterase and its inhibitors in the last decade: an overview. Applied Spectroscopy Reviews, 2023, 58, 271-295.	3.4	1
2	3D CoxP@NiCo-LDH heteronanosheet array: As a high sensitivity sensor for glucose. Microchemical Journal, 2022, 172, 106923.	2.3	17
3	ZIF derived N-CoS2@graphene rhombic dodecahedral nanocomposites: As a high sensitivity sensor for hydrazine. Sensors and Actuators B: Chemical, 2022, 351, 130967.	4.0	18
4	In situ formation of silver nanoparticles via hydride generation: A miniaturized/portable visual colorimetric system for arsenic detection in environmental water samples. Analytica Chimica Acta, 2022, 1192, 339366.	2.6	9
5	Rapid Preparation of 3D Ultra-Thin CuO Nanosheets by Dielectric Barrier Discharge Microplasma for Non-Enzymatic Detection of Glucose. Catalysis Letters, 2022, 152, 3517-3525.	1.4	3
6	One-step synthesis of Mn3O4@ZIF-67 on carbon cloth: As an effective non-enzymatic glucose sensor. Microchemical Journal, 2022, 175, 107203.	2.3	16
7	One step synthesis of Co-Ni bimetallic organic frameworks as a highly active and durable electrocatalyst for efficient water oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129041.	2.3	8
8	One-step rapid synthesis of NiMoO4·xH2O nanowires by dielectric barrier discharge micro-plasma method for high-efficiency non-enzymatic glucose sensing. Journal of Materials Science, 2022, 57, 11673-11683.	1.7	6
9	Three-dimensional Setaria viridis-like NiCoSe2 nanoneedles array: As an efficient electrochemical hydrazine sensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129549.	2.3	5
10	One-step synthesis of CuO nanoparticles based on flame synthesis: As a highly effective non-enzymatic sensor for glucose, hydrogen peroxide and formaldehyde. Journal of Electroanalytical Chemistry, 2021, 881, 114965.	1.9	32
11	Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion. Nano Research, 2021, 14, 2831-2836.	5.8	62
12	Fast and facile synthesis of carbonate-modified NiFe layered double hydroxide nanosheets by dielectric barrier discharge microplasma: mechanism and application in enhanced water oxidation. Journal of Materials Science, 2021, 56, 8115-8126.	1.7	10
13	Synthesis of 3D CoO nanowires supported NiFe layered double hydroxide using an atmospheric pressure microplasma for high-performance oxygen evolution reaction. Chemical Engineering Journal, 2021, 410, 128366.	6.6	39
14	Microplasma synthesis of Ni(OH)2 nanoflake array on carbon cloth as an efficient nonenzymatic sensor for glucose. Ionics, 2021, 27, 2739-2745.	1.2	4
15	Co-Based Transition Metal Hydroxide Nanosheet Arrays on Carbon Cloth for Sensing Glucose and Formaldehyde. ACS Applied Nano Materials, 2021, 4, 5076-5083.	2.4	12
16	One-step synthesis of Co(OH)F nanoflower based on micro-plasma: As an effective non-enzymatic glucose sensor. Sensors and Actuators B: Chemical, 2020, 304, 127282.	4.0	47
17	Flame synthesis of NiO nanoparticles on carbon cloth: An efficient non-enzymatic sensor for glucose and formaldehyde. Microchemical Journal, 2020, 159, 105505.	2.3	15
18	3D shell-core structured NiCu-OH@Cu(OH)2 nanorod: A high-performance catalytic electrode for non-enzymatic glucose detection. Journal of Electroanalytical Chemistry, 2020, 876, 114477.	1.9	14

#	Article	lF	CITATIONS
19	Room temperature ultrafast synthesis of zinc oxide nanomaterials via hydride generation for non-enzymatic glucose detection. Microchemical Journal, 2020, 159, 105396.	2.3	15
20	NiCl(OH) nanosheet array as a high sensitivity electrochemical sensor for detecting glucose in human serum and saliva. Microchemical Journal, 2020, 158, 105184.	2.3	17
21	Cysteine mediated synthesis of quantum dots: Mechanism and application in visual detection of hydrogen peroxide and glucose. Sensors and Actuators B: Chemical, 2020, 308, 127702.	4.0	14
22	Boron Phosphide Nanoparticles: A Nonmetal Catalyst for Highâ€Selectivity Electrochemical Reduction of CO ₂ to CH ₃ OH. Advanced Materials, 2019, 31, e1903499.	11.1	169
23	Recent developments in chemical vapor generation atomic spectrometry for zinc detection. Microchemical Journal, 2019, 149, 104052.	2.3	23
24	A sensitive and label-free sensor for melamine and iodide by target-regulating the formation of G-quadruplex. Microchemical Journal, 2019, 146, 592-599.	2.3	17
25	SnO ₂ nanorod: An efficient non-noble-metal electrocatalyst for non-enzymatic H ₂ O ₂ sensing. Materials Research Express, 2019, 6, 065055.	0.8	6
26	La2O3 nanoplate: An efficient electrocatalyst for artificial N2 fixation to NH3 with excellent selectivity at ambient condition. Electrochimica Acta, 2019, 298, 106-111.	2.6	38
27	Enhancing Electrocatalytic N ₂ Reduction to NH ₃ by CeO ₂ Nanorod with Oxygen Vacancies. ACS Sustainable Chemistry and Engineering, 2019, 7, 2889-2893.	3.2	121
28	One-pot synthesis of bovine serum albumin protected gold/silver bimetallic nanoclusters for ratiometric and visual detection of mercury. Microchemical Journal, 2018, 139, 1-8.	2.3	42
29	Co-Doped CuO Nanoarray: An Efficient Oxygen Evolution Reaction Electrocatalyst with Enhanced Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 2883-2887.	3.2	277
30	An Fe(TCNQ) ₂ nanowire array on Fe foil: an efficient non-noble-metal catalyst for the oxygen evolution reaction in alkaline media. Chemical Communications, 2018, 54, 2300-2303.	2.2	120
31	Ultrathin CoFe-Borate Layer Coated CoFe-Layered Double Hydroxide Nanosheets Array: A Non-Noble-Metal 3D Catalyst Electrode for Efficient and Durable Water Oxidation in Potassium Borate. ACS Sustainable Chemistry and Engineering, 2018, 6, 1527-1531.	3.2	134
32	A Ni ₃ N–Co ₃ N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection. Analytical Methods, 2018, 10, 1680-1684.	1.3	35
33	MnO2-CoP3 nanowires array: An efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity. Electrochemistry Communications, 2018, 86, 161-165.	2.3	202
34	In Situ Formation of a 3D Amorphous Cobalt―Borate Nanoarray: An Efficient Nonâ€Noble Metal Catalytic Electrode for Nonâ€Enzyme Glucose Detection. ChemistrySelect, 2018, 3, 10580-10584.	0.7	3
35	A traffic light-type sensitive visual detection of mercury by golden nanoclusters mixed with fluorescein. Microchemical Journal, 2018, 141, 163-169.	2.3	11
36	Nanoporous CoP ₃ Nanowire Array: Acid Etching Preparation and Application as a Highly Active Electrocatalyst for the Hydrogen Evolution Reaction in Alkaline Solution. ACS Sustainable Chemistry and Engineering, 2018, 6, 11186-11189.	3.2	134

#	Article	IF	CITATIONS
37	Full Water Splitting Electrocatalyzed by NiWO ₄ Nanowire Array. ACS Sustainable Chemistry and Engineering, 2018, 6, 9555-9559.	3.2	124
38	Speciation of mercury by hydride generation ultraviolet atomization-atomic fluorescence spectrometry without chromatographic separation. Microchemical Journal, 2018, 143, 228-233.	2.3	36
39	Nickel-carbonate nanowire array: An efficient and durable electrocatalyst for water oxidation under nearly neutral conditions. Frontiers of Chemical Science and Engineering, 2018, 12, 467-472.	2.3	26
40	Gold nanoclusters immobilized paper for visual detection of zinc in whole blood and cells by coupling hydride generation with headspace solid phase extraction. Sensors and Actuators B: Chemical, 2018, 255, 1631-1639.	4.0	34
41	Simultaneous determination of arsenic and cadmium by hydride generation atomic fluorescence spectrometry using magnetic zero-valent iron nanoparticles for separation and pre-concentration. Microchemical Journal, 2017, 133, 518-523.	2.3	39
42	An amorphous Co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolytes. Nanoscale, 2017, 9, 16612-16615.	2.8	173
43	Ni2P nanosheets array as a novel electrochemical catalyst electrode for non-enzymatic H2O2 sensing. Electrochimica Acta, 2017, 253, 517-521.	2.6	96
44	Ultrasensitive speciation analysis of silver ions and silver nanoparticles with a CdSe quantum dots immobilized filter by Cation exchange reaction. Microchemical Journal, 2017, 135, 74-80.	2.3	21
45	Fe ₂ Ni ₂ N nanosheet array: an efficient non-noble-metal electrocatalyst for non-enzymatic glucose sensing. Nanotechnology, 2017, 28, 365503.	1.3	17
46	Interaction Mode between Inclusion Complex of Vitamin K3with \hat{I}^3 - Cyclodextrin and Herring-Sperm DNA. Nucleosides, Nucleotides and Nucleic Acids, 2016, 35, 245-258.	0.4	1
47	Enhanced thermal conductivity for poly(vinylidene fluoride) composites with nano-carbon fillers. RSC Advances, 2016, 6, 68357-68362.	1.7	55
48	Oligonucleotide-stabilized fluorescent silver nanoclusters for the specific and sensitive detection of biotin. Analyst, The, 2016, 141, 1499-1505.	1.7	9
49	A label-free fluorescent assay for free chlorine in drinking water based on protein-stabilized gold nanoclusters. Talanta, 2015, 132, 790-795.	2.9	33
50	DNA Binding Studies of Hematoxylin-Dy(Đ [°]) Complex by Spectrometry Using Acridine Orange as a Probe. Nucleosides, Nucleotides and Nucleic Acids, 2014, 33, 730-745.	0.4	5