Matthew A Addicoat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4984362/publications.pdf Version: 2024-02-01

		44444	30277
125	11,911	50	107
papers	citations	h-index	g-index
131	131	131	11183
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Norbornane-based covalent organic frameworks for gas separation. Nanoscale, 2022, 14, 2475-2481.	2.8	24
2	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² arbon Covalent Organic Framework Semiconductors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	38
3	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² arbon Covalent Organic Framework Semiconductors. Angewandte Chemie, 2022, 134, .	1.6	7
4	Control of Crystallinity of Vinyleneâ€Linked Twoâ€Đimensional Conjugated Polymers by Rational Monomer Design. Chemistry - A European Journal, 2022, 28, .	1.7	5
5	Combination of Knoevenagel Polycondensation and Waterâ€Assisted Dynamic Michaelâ€Additionâ€Elimination for the Synthesis of Vinyleneâ€Linked 2D Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
6	Combination of Knoevenagel Polycondensation and Waterâ€Assisted Dynamic Michaelâ€Additionâ€Elimination for the Synthesis of Vinyleneâ€Linked 2D Covalent Organic Frameworks. Angewandte Chemie, 2022, 134, .	1.6	4
7	A Nanographeneâ€Based Twoâ€Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	38
8	A Nanographeneâ€Based Twoâ€Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angewandte Chemie, 2022, 134, .	1.6	2
9	Performance of GFN1-xTB for periodic optimization of metal organic frameworks. Physical Chemistry Chemical Physics, 2022, 24, 10906-10914.	1.3	4
10	Outstanding Charge Mobility by Band Transport in Two-Dimensional Semiconducting Covalent Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 7489-7496.	6.6	43
11	Dual Metalation in a Two-Dimensional Covalent Organic Framework for Photocatalytic C–N Cross-Coupling Reactions. Journal of the American Chemical Society, 2022, 144, 7822-7833.	6.6	102
12	Effect of unwanted guest molecules on the stacking configuration of covalent organic frameworks: a periodic energy decomposition analysis. Physical Chemistry Chemical Physics, 2022, 24, 15494-15501.	1.3	4
13	Efficacious and sustained release of an anticancer drug mitoxantrone from new covalent organic frameworks using protein corona. Chemical Science, 2022, 13, 7920-7932.	3.7	15
14	Thermal Conductivity of Two-Dimensional Benzobisoxazole-Linked Covalent Organic Frameworks with Nanopores: Implications for Thermal Management Applications. ACS Applied Nano Materials, 2022, 5, 13787-13793.	2.4	6
15	Thiopheneâ€Bridged Donor–Acceptor sp ² â€Carbonâ€Linked 2D Conjugated Polymers as Photocathodes for Water Reduction. Advanced Materials, 2021, 33, e2006274.	11.1	100
16	A supramolecular cavitand for selective chromatographic separation of peptides using LC-MS/MS: a combined in silico and experimental approach. New Journal of Chemistry, 2021, 45, 141-146.	1.4	2
17	Mixed hierarchical local structure in a disordered metal–organic framework. Nature Communications, 2021, 12, 2062.	5.8	44
18	Supramolecular Chromatographic Separation of C60 and C70 Fullerenes: Flash Column Chromatography vs. High Pressure Liquid Chromatography. International Journal of Molecular Sciences, 2021, 22, 5726.	1.8	0

#	Article	IF	CITATIONS
19	A Dual-Function Highly Crystalline Covalent Organic Framework for HCl Sensing and Visible-Light Heterogeneous Photocatalysis. Macromolecules, 2021, 54, 6595-6604.	2.2	34
20	Role of Host-Guest Interaction in Understanding Polymerisation in Metal-Organic Frameworks. Frontiers in Chemistry, 2021, 9, 716294.	1.8	3
21	Exceptional electron conduction in two-dimensional covalent organic frameworks. CheM, 2021, 7, 3309-3324.	5.8	41
22	Tailored pore size and microporosity of covalent organic framework (COF) membranes for improved molecular separation. , 2021, 1, 100008.		6
23	Silica bound co-pillar[4+1]arene as a novel supramolecular stationary phase. Chemical Communications, 2020, 56, 1792-1794.	2.2	9
24	Synthese von Vinylâ€verknüpften zweidimensionalen konjugierten Polymeren via Hornerâ€Wadsworthâ€Emmonsâ€Reaktion. Angewandte Chemie, 2020, 132, 23827-23832.	1.6	18
25	Near–atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer. Science Advances, 2020, 6, eabb5976.	4.7	39
26	Synthesis of Vinyleneâ€Linked Twoâ€Dimensional Conjugated Polymers via the Horner–Wadsworth–Emmons Reaction. Angewandte Chemie - International Edition, 2020, 59, 23620-23625.	7.2	86
27	Luminescent sp ² -Carbon-Linked 2D Conjugated Polymers with High Photostability. Chemistry of Materials, 2020, 32, 7985-7991.	3.2	48
28	Morphological Evolution of Two-Dimensional Porous Hexagonal Trimesic Acid Framework. ACS Applied Materials & Interfaces, 2020, 12, 15588-15594.	4.0	12
29	How to functionalise metal–organic frameworks to enable guest nanocluster embedment. Journal of Materials Chemistry A, 2020, 8, 4889-4897.	5.2	6
30	A Thiadiazole-Based Covalent Organic Framework: A Metal-Free Electrocatalyst toward Oxygen Evolution Reaction. ACS Catalysis, 2020, 10, 5623-5630.	5.5	140
31	Pore engineering of ultrathin covalent organic framework membranes for organic solvent nanofiltration and molecular sieving. Chemical Science, 2020, 11, 5434-5440.	3.7	78
32	Catalytic Activity Towards Hydrogen Evolution Dependent of the Degree of Conjugation and Absorption of Six Organic Chromophores. ChemistryOpen, 2020, 9, 405-408.	0.9	1
33	Connecting Microscopic Structures, Mesoscale Assemblies, and Macroscopic Architectures in 3D-Printed Hierarchical Porous Covalent Organic Framework Foams. Journal of the American Chemical Society, 2020, 142, 8252-8261.	6.6	115
34	One step conversion of 1,5-bis(dimethylamino)naphthalene to salts of "back to back―bis-acridine derivatives. New Journal of Chemistry, 2020, 44, 9621-9625.	1.4	3
35	Confining H3PO4 network in covalent organic frameworks enables proton super flow. Nature Communications, 2020, 11, 1981.	5.8	114
36	A Nitrogenâ€Rich 2D sp ² â€Carbonâ€Linked Conjugated Polymer Framework as a Highâ€Performand Cathode for Lithiumâ€Ion Batteries. Angewandte Chemie, 2019, 131, 859-863.	2e _{1.6}	71

#	Article	IF	CITATIONS
37	Weak Intermolecular Interactions in Covalent Organic Framework-Carbon Nanofiber Based Crystalline yet Flexible Devices. ACS Applied Materials & Interfaces, 2019, 11, 30828-30837.	4.0	54
38	Highâ€Precision Size Recognition and Separation in Synthetic 1D Nanochannels. Angewandte Chemie - International Edition, 2019, 58, 15922-15927.	7.2	50
39	Highâ€Precision Size Recognition and Separation in Synthetic 1D Nanochannels. Angewandte Chemie, 2019, 131, 16069-16074.	1.6	13
40	Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chemical Science, 2019, 10, 8889-8894.	3.7	220
41	Azobenzene-Equipped Covalent Organic Framework: Light-Operated Reservoir. Journal of the American Chemical Society, 2019, 141, 19078-19087.	6.6	86
42	Porosity Switching in Polymorphic Porous Organic Cages with Exceptional Chemical Stability. Angewandte Chemie, 2019, 131, 4287-4291.	1.6	10
43	Porosity Switching in Polymorphic Porous Organic Cages with Exceptional Chemical Stability. Angewandte Chemie - International Edition, 2019, 58, 4243-4247.	7.2	39
44	O ^(â^') â< ⁻ C interactions and bond formation in 1-naphtholate anions with <i>peri</i> -located electrophilic carbon centres. CrystEngComm, 2019, 21, 1009-1018.	1.3	7
45	A Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage. Advanced Materials, 2019, 31, e1901478.	11.1	192
46	Redox-Triggered Buoyancy and Size Modulation of a Dynamic Covalent Gel. Chemistry of Materials, 2019, 31, 4148-4155.	3.2	15
47	Fully sp ² â€Carbonâ€Linked Crystalline Twoâ€Dimensional Conjugated Polymers: Insight into 2D Poly(phenylenecyanovinylene) Formation and its Optoelectronic Properties. Chemistry - A European Journal, 2019, 25, 6562-6568.	1.7	40
48	Nonlinear Optical Switching in Regioregular Porphyrin Covalent Organic Frameworks. Angewandte Chemie, 2019, 131, 6970-6974.	1.6	43
49	Nonlinear Optical Switching in Regioregular Porphyrin Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 6896-6900.	7.2	135
50	Triazine Functionalized Porous Covalent Organic Framework for Photo-organocatalytic <i>E</i> – <i>Z</i> Isomerization of Olefins. Journal of the American Chemical Society, 2019, 141, 6152-6156.	6.6	270
51	The SMFA program for quantum chemistry calculations on large molecules. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1413.	6.2	6
52	On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nature Chemistry, 2019, 11, 994-1000.	6.6	262
53	A Nitrogenâ€Rich 2D sp ² â€Carbonâ€Linked Conjugated Polymer Framework as a Highâ€Performanc Cathode for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2019, 58, 849-853.	e 7.2	275
54	Ultrastable Imineâ€Based Covalent Organic Frameworks for Sulfuric Acid Recovery: An Effect of Interlayer Hydrogen Bonding. Angewandte Chemie - International Edition, 2018, 57, 5797-5802.	7.2	192

#	Article	IF	CITATIONS
55	Ultrastable Imineâ€Based Covalent Organic Frameworks for Sulfuric Acid Recovery: An Effect of Interlayer Hydrogen Bonding. Angewandte Chemie, 2018, 130, 5899-5904.	1.6	39
56	Structure and dynamics of ionic liquids: general discussion. Faraday Discussions, 2018, 206, 291-337.	1.6	8
57	Ionic liquids at interfaces: general discussion. Faraday Discussions, 2018, 206, 549-586.	1.6	Ο
58	Structure searching methods: general discussion. Faraday Discussions, 2018, 211, 133-180.	1.6	3
59	Crystal structure evaluation: calculating relative stabilities and other criteria: general discussion. Faraday Discussions, 2018, 211, 325-381.	1.6	7
60	Probing charge transfer characteristics in a donor–acceptor metal–organic framework by Raman spectroelectrochemistry and pressure-dependence studies. Physical Chemistry Chemical Physics, 2018, 20, 25772-25779.	1.3	28
61	Covalent organic framework based microspheres as an anode material for rechargeable sodium batteries. Journal of Materials Chemistry A, 2018, 6, 16655-16663.	5.2	113
62	Interlayer Hydrogen-Bonded Covalent Organic Frameworks as High-Performance Supercapacitors. Journal of the American Chemical Society, 2018, 140, 10941-10945.	6.6	339
63	Molecular Level Control of the Capacitance of Two-Dimensional Covalent Organic Frameworks: Role of Hydrogen Bonding in Energy Storage Materials. Chemistry of Materials, 2017, 29, 2074-2080.	3.2	277
64	Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. Angewandte Chemie, 2017, 129, 5064-5068.	1.6	33
65	Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. Angewandte Chemie - International Edition, 2017, 56, 4982-4986.	7.2	217
66	MOFs modeling and theory: general discussion. Faraday Discussions, 2017, 201, 233-245.	1.6	4
67	New directions in gas sorption and separation with MOFs: general discussion. Faraday Discussions, 2017, 201, 175-194.	1.6	6
68	Highlights from the Faraday Discussion on New Directions in Porous Crystalline Materials, Edinburgh, UK, June 2017. Chemical Communications, 2017, 53, 10750-10756.	2.2	0
69	Explicit treatment of hydrogen bonds in the universal force field: Validation and application for metal-organic frameworks, hydrates, and host-guest complexes. Journal of Chemical Physics, 2017, 147, 161705.	1.2	10
70	Two-dimensional sp ² carbon–conjugated covalent organic frameworks. Science, 2017, 357, 673-676.	6.0	866
71	Electrochemical Stimuli-Driven Facile Metal-Free Hydrogen Evolution from Pyrene-Porphyrin-Based Crystalline Covalent Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 23843-23851.	4.0	179
72	Decoding the Morphological Diversity in Two Dimensional Crystalline Porous Polymers by Core Planarity Modulation. Angewandte Chemie - International Edition, 2016, 55, 7806-7810.	7.2	168

#	Article	IF	CITATIONS
73	Highly Emissive Covalent Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 5797-5800.	6.6	501
74	Linear Chains of Magnetic Ions Stacked with Variable Distance: Ferromagnetic Ordering with a Curie Temperature above 20â€K. Angewandte Chemie - International Edition, 2016, 55, 12683-12687.	7.2	14
75	Extension of the Universal Force Field for Metal–Organic Frameworks. Journal of Chemical Theory and Computation, 2016, 12, 5215-5225.	2.3	126
76	Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO ₂ to CO exhibiting high faradaic efficiency. Journal of Materials Chemistry A, 2016, 4, 15320-15326.	5.2	166
77	Multiple-component covalent organic frameworks. Nature Communications, 2016, 7, 12325.	5.8	227
78	Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity. Scientific Reports, 2016, 6, 32944.	1.6	39
79	First spectroscopic observation of gold(<scp>i</scp>) butadiynylide: Photodetachment velocity map imaging of the AuC4H anion. Journal of Chemical Physics, 2016, 145, 044320.	1.2	7
80	Decoding the Morphological Diversity in Two Dimensional Crystalline Porous Polymers by Core Planarity Modulation. Angewandte Chemie, 2016, 128, 7937-7941.	1.6	32
81	Controlling embedment and surface chemistry of nanoclusters in metal–organic frameworks. Chemical Communications, 2016, 52, 5175-5178.	2.2	18
82	Interplaying Intrinsic and Extrinsic Proton Conductivities in Covalent Organic Frameworks. Chemistry of Materials, 2016, 28, 1489-1494.	3.2	310
83	Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO ₂ Separation. Chemistry of Materials, 2016, 28, 1277-1285.	3.2	541
84	Designed synthesis of double-stage two-dimensional covalent organic frameworks. Scientific Reports, 2015, 5, 14650.	1.6	107
85	Covalently Linked Organic Networks. Frontiers in Materials, 2015, 2, .	1.2	6
86	Creation of Superheterojunction Polymers via Direct Polycondensation: Segregated and Bicontinuous Donor–Acceptor π-Columnar Arrays in Covalent Organic Frameworks for Long-Lived Charge Separation. Journal of the American Chemical Society, 2015, 137, 7817-7827.	6.6	213
87	Solid state organic amine detection in a photochromic porous metal organic framework. Chemical Science, 2015, 6, 1420-1425.	3.7	316
88	Locking Covalent Organic Frameworks with Hydrogen Bonds: General and Remarkable Effects on Crystalline Structure, Physical Properties, and Photochemical Activity. Journal of the American Chemical Society, 2015, 137, 3241-3247.	6.6	320
89	Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nature Communications, 2015, 6, 7786.	5.8	274
90	Photodetachment velocity map imaging of the 1A′ â†2A′ transition in the AuOH anion. Chemical Physics Letters, 2015, 625, 164-167.	1.2	5

#	Article	IF	CITATIONS
91	Photoinduced Charge arrier Generation in Epitaxial MOF Thin Films: High Efficiency as a Result of an Indirect Electronic Band Gap?. Angewandte Chemie - International Edition, 2015, 54, 7441-7445.	7.2	206
92	Chemical sensing in two dimensional porous covalent organic nanosheets. Chemical Science, 2015, 6, 3931-3939.	3.7	504
93	Extension of the Universal Force Field to Metal–Organic Frameworks. Journal of Chemical Theory and Computation, 2014, 10, 880-891.	2.3	200
94	Fabrication of Highly Uniform Gel Coatings by the Conversion of Surface-Anchored Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 8-11.	6.6	116
95	3-Dimensional atomic scale structure of the ionic liquid–graphite interface elucidated by AM-AFM and quantum chemical simulations. Nanoscale, 2014, 6, 8100-8106.	2.8	78
96	Catalytic covalent organic frameworks via pore surface engineering. Chemical Communications, 2014, 50, 1292-1294.	2.2	292
97	Assessment of the Density Functional Tight Binding Method for Protic Ionic Liquids. Journal of Chemical Theory and Computation, 2014, 10, 4633-4643.	2.3	44
98	AuToGraFS: Automatic Topological Generator for Framework Structures. Journal of Physical Chemistry A, 2014, 118, 9607-9614.	1.1	67
99	Stochastic structure determination for conformationally flexible heterogenous molecular clusters: Application to ionic liquids. Journal of Computational Chemistry, 2013, 34, 2591-2600.	1.5	37
100	Conjugated organic framework with three-dimensionally ordered stable structure and delocalized $\ddot{i} \in$ clouds. Nature Communications, 2013, 4, 2736.	5.8	528
101	Large pore donor–acceptor covalent organic frameworks. Chemical Science, 2013, 4, 4505.	3.7	127
102	Control of Crystallinity and Porosity of Covalent Organic Frameworks by Managing Interlayer Interactions Based on Self-Complementary π-Electronic Force. Journal of the American Chemical Society, 2013, 135, 546-549.	6.6	257
103	Charge Dynamics in A Donor–Acceptor Covalent Organic Framework with Periodically Ordered Bicontinuous Heterojunctions. Angewandte Chemie - International Edition, 2013, 52, 2017-2021.	7.2	263
104	Stochastic Search of Molecular Cluster Interaction Energy Surfaces with Coupled Cluster Quality Prediction. The Phenylacetylene Dimer. Journal of Chemical Theory and Computation, 2013, 9, 3848-3854.	2.3	2
105	Spectroscopic observation of gold-dicarbide: Photodetachment and velocity map imaging of the AuC2 anion. Journal of Chemical Physics, 2013, 138, 174310.	1.2	18
106	Reactions of Nb2 and Nb3 with CO, D2, N2, and O2: Reconciling experimental kinetics with density functional theory-calculated reaction profiles. Journal of Chemical Physics, 2012, 137, 034301.	1.2	6
107	Optimization of a Genetic Algorithm for the Functionalization of Fullerenes. Journal of Chemical Theory and Computation, 2012, 8, 1841-1851.	2.3	14
108	The fragment molecular orbital and systematic molecular fragmentation methods applied to water clusters. Physical Chemistry Chemical Physics, 2012, 14, 7752.	1.3	61

#	Article	IF	CITATIONS
109	Optimization of a genetic algorithm for searching molecular conformer space. Journal of Chemical Physics, 2011, 135, 174106.	1.2	23
110	A π-stacked phenylacetylene dimer. Physical Chemistry Chemical Physics, 2011, 13, 16706.	1.3	33
111	A Density Functional Theory Investigation of the Bimetallic Clusters Nb2Rh and NbRh2 and the Complexes They Form with CO. Australian Journal of Chemistry, 2011, 64, 1554.	0.5	2
112	Density functional theory investigation of Cu(I)―and Cu(II) urcumin complexes. Journal of Computational Chemistry, 2011, 32, 429-438.	1.5	22
113	Using a Meta-GA for parametric optimization of simple gas in the computational chemistry domain. , 2010, , .		0
114	Photoionization efficiency spectroscopy and density functional theory investigations of RhHo2On (n=0–2) clusters. Journal of Chemical Physics, 2009, 130, 164311.	1.2	5
115	Accurate treatment of nonbonded interactions within systematic molecular fragmentation. Journal of Chemical Physics, 2009, 131, .	1.2	66
116	Kick: Constraining a stochastic search procedure with molecular fragments. Journal of Computational Chemistry, 2009, 30, 57-64.	1.5	55
117	Excited states of Nb3N2 and Nb3C2: Density functional theory, CASSCF, and MRCI studies. Journal of Chemical Physics, 2009, 130, 164308.	1.2	5
118	Associative versus dissociative binding of CO to 4 <i>d</i> transition metal trimers: A density functional study. Journal of Computational Chemistry, 2008, 29, 1497-1506.	1.5	12
119	Threshold Photoionization and Density Functional Theory Studies of the Niobium Carbide Clusters Nb ₃ C _{<i>n</i>} (<i>n</i> = 1â^4) and Nb ₄ C _{<i>n</i>} (<i>n</i> = 1â^6). Journal of Physical Chemistry A, 2008, 112, 5582-5592.	1.1	31
120	Computational Study of CO Reactivity with Nb3X Heteronuclear Clusters. Australian Journal of Chemistry, 2008, 61, 854.	0.5	1
121	BFW:Â A Density Functional for Transition Metal Clusters. Journal of Physical Chemistry A, 2007, 111, 2625-2628.	1.1	8
122	Ionization Potentials of Tantalumâ~'Carbide Clusters:  An Experimental and Density Functional Theory Study. Journal of Physical Chemistry A, 2005, 109, 11180-11190.	1.1	27
123	'Perfect Match'—Combining Density Functional Calculations with Spectroscopic Characterization of Transition Metal Clusters. Australian Journal of Chemistry, 2005, 58, 564.	0.5	1
124	DFT Calculations on Group 5 Mixed Metal Tetramers: TaxNbyVz (x + y + z = 4). Australian Journal of Chemistry, 2004, 57, 1197.	0.5	8
125	Photoionization of Nb3CO and Nb3(CO)2:Â Is CO Molecularly or Dissociatively Adsorbed on Niobium?. Journal of Physical Chemistry A, 2004, 108, 964-970.	1.1	26