Irina I Mikhalenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4984016/publications.pdf

Version: 2024-02-01

1307594 1199594 29 147 7 12 citations g-index h-index papers 31 31 31 94 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Influence of compensator ions in the anionic part of Na3ZrM(PO4)3 phosphate with $M=Zn$, Co, Cu on the acidity and catalytic activity in reactions of butanol-2. Russian Journal of Physical Chemistry A, 2013, 87, 372-375.	0.6	21
2	Activation of Cu-, Ag-, Au/ZrO2 Catalysts for Dehydrogenation of Alcohols by Low-Temperature Oxygen and Hydrogen Plasma. Theoretical and Experimental Chemistry, 2013, 49, 65-69.	0.8	21
3	Dehydrogenation of butyl alcohols on NASICON-type solid electrolytes of Na1 â^² 2x Cu x Zr2(PO4)3 composition. Russian Journal of Physical Chemistry A, 2011, 85, 2109-2114.	0.6	17
4	Catalytic dehydrogenation of propanol-2 on Na-Zr phosphates containing Cu, Co, and Ni. Russian Journal of Physical Chemistry A, 2012, 86, 935-941.	0.6	17
5	Dehydration of butanols on copper-containing zirconium orthophosphates. Russian Journal of Physical Chemistry A, 2010, 84, 400-404.	0.6	13
6	Catalytic Activity of Thermally Treated Li3Fe2(PO4)3 in the Conversion of Butan-1-ol. Mendeleev Communications, 2012, 22, 150-151.	1.6	7
7	Ethanol dehydrogenation on copper catalysts with ytterbium stabilized tetragonal ZrO2 support. Russian Journal of Physical Chemistry A, 2016, 90, 2370-2376.	0.6	7
8	The influence of plasma chemical treatments on the activity of the Li3Fe2(PO4)3 catalyst in butanol-2 transformations. Russian Journal of Physical Chemistry A, 2006, 80, 882-885.	0.6	5
9	Adsorption of carbon dioxide on tantalum oxide coated with palladium chloride. Russian Journal of Physical Chemistry A, 2006, 80, 1528-1531.	0.6	5
10	Isobutanol dehydrogenation on copper-containing bismuth vanadates. Russian Journal of Physical Chemistry A, 2013, 87, 560-564.	0.6	5
11	Hydrothermal ethanol conversion on Ag, Cu, Au/TiO2. Russian Journal of Physical Chemistry A, 2014, 88, 1637-1642.	0.6	5
12	Reactions of isobutanol over a NASICON-type Ni-containing catalyst activated by plasma treatments. Kinetics and Catalysis, 2015, 56, 476-479.	1.0	5
13	The desorption and reactivity of butanol adsorbed on lithium iron phosphate (LISICON) activated in a hydrogen plasma. Russian Journal of Physical Chemistry A, 2010, 84, 2172-2176.	0.6	4
14	States of Adsorbed Hydrogen and Their Effect on the Reaction of CO Oxidation on Pd and Ta. Kinetics and Catalysis, 2004, 45, 239-246.	1.0	2
15	Effect of plasma-chemical and thermal treatment in oxygen on the activity of Na3ZrM(PO4)3 phosphates (M = Zn, Co, Cu) in the transformation of butanol-2. Russian Journal of Physical Chemistry A, 2013, 87, 929-934.	0.6	2
16	Desorption and reactions between alcohols adsorbed on Na-Zr-M phosphates and a compensator ion $M = Cu2+$, Ni2+, Co2+. Protection of Metals and Physical Chemistry of Surfaces, 2014, 50, 331-335.	1.1	2
17	Pyridine adsorption for probing electron-acceptor sites on the surface of titanium oxide with supported silver, copper, and gold ions. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51, 934-938.	1.1	2
18	The Role of Structure and Conductivity of Perovskites Bi4V2â^2x M2x O11â^Î^ (M = Cu2+, Fe3+, Zr4+) in the Catalytic Dehydrogenation of Isobutanol. Russian Journal of Physical Chemistry A, 2016, 90, 771-776.	0.6	2

#	Article	IF	CITATIONS
19	Characteristics of hydrogen sorption/desorption for palladium foil doped by yttrium. Journal of Physics: Conference Series, 2018, 1134, 012040.	0.4	2
20	The effect of doping of the ultradispersed nickel powder by pyrocarbon on oxygen adsorption and Oads + CO reaction. Kinetics and Catalysis, 2000, 41, 211-215.	1.0	1
21	Properties of copper-containing catalysts on a NASICON support in transformations of butanol. Russian Journal of Physical Chemistry A, 2006, 80, S111-S115.	0.6	1
22	NASICON Catalysts with Composition Na(Cs)1 – 2xMxZr2(PO4)3 for Transformations of Aliphatic Alcohols. Petroleum Chemistry, 2020, 60, 1176-1183.	1.4	1
23	Effect of Low-Temperature Treatment of Silver Hydrosol on Its Absorption Spectra. Colloid Journal, 2002, 64, 252-255.	1.3	0
24	Effect of low-temperature treatment on the state of gold hydrosol particles. Russian Journal of Physical Chemistry A, 2010, 84, 1053-1058.	0.6	0
25	Oxidation of phenol and chlorophenols on platinized titanium anodes in an acidic medium. Russian Journal of Physical Chemistry A, 2016, 90, 1289-1292.	0.6	0
26	Adsorption of CO2 on skeletal cobalt and nickel zirconium phosphates after their treatment with high-frequency hydrogen and argon plasma. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 793-796.	1.1	0
27	Relationship between the crystal structure, conductive and catalytic properties of perovskites Bi4Fe2V2â´'2O11â´'. Mendeleev Communications, 2019, 29, 541-543.	1.6	0
28	ACTIVITY OF BI4V2-2XCU2XO11–Δ IN THE TRANSFORMATION OF ISOBUTANOL AFTER PLASMA-CHEMICAL TREATMENT. Acta Metallurgica Slovaca, 2018, 24, 75.	0.7	0
29	Understanding the electron-accepting sites on the surface of cage zirconium phosphates of NASICON type doped with cobalt, nickel and copper ions. Tsvetnye Metally, 2019, , 28-33.	0.2	O