William Daniel Phillips

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4983892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurology, The, 2022, 21, 163-175.	4.9	35
2	Impaired signaling for neuromuscular synaptic maintenance is a feature of Motor Neuron Disease. Acta Neuropathologica Communications, 2022, 10, 61.	2.4	6
3	Vectorâ€mediated expression of muscle specific kinase restores specific force to muscles in the mdx mouse model of Duchenne muscular dystrophy. Experimental Physiology, 2021, 106, 1794-1805.	0.9	Ο
4	Influence of cannabinoids upon nerve-evoked skeletal muscle contraction. Neuroscience Letters, 2020, 725, 134900.	1.0	12
5	Muscle specific kinase protects dystrophic <i>mdx</i> mouse muscles from eccentric contractionâ€induced loss of forceâ€producing capacity. Journal of Physiology, 2019, 597, 4831-4850.	1.3	11
6	Differentiation of CD45‑/CD31+ lung side population cells into endothelial and smooth muscle cells in vitro. International Journal of Molecular Medicine, 2019, 43, 1128-1138.	1.8	8
7	Cannabinoid-induced increase of quantal size and enhanced neuromuscular transmission. Scientific Reports, 2018, 8, 4685.	1.6	17
8	Animal Models of Myasthenia Gravis for Preclinical Evaluation. , 2018, , 61-70.		0
9	The mouse passiveâ€ŧransfer model of MuSK myasthenia gravis: disrupted MuSK signaling causes synapse failure. Annals of the New York Academy of Sciences, 2018, 1412, 54-61.	1.8	8
10	Proliferation, differentiation and migration of SCA1â^'/CD31â^' cardiac side population cells in vitro and in vivo. International Journal of Cardiology, 2017, 227, 378-386.	0.8	4
11	Postnatal Development of Spasticity Following Transgene Insertion in the Mouse βIV Spectrin Gene (SPTBN4). Journal of Neuromuscular Diseases, 2017, 4, 159-164.	1.1	1
12	Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms. F1000Research, 2016, 5, 1513.	0.8	115
13	Rifampicinâ€dependent antibodies target glycoprotein <scp>II</scp> b/ <scp>III</scp> a and cause clearance of human platelets in <scp>NOD</scp> / <scp>SCID</scp> mice. British Journal of Haematology, 2016, 172, 137-140.	1.2	5
14	Forced expression of muscle specific kinase slows postsynaptic acetylcholine receptor loss in a mouse model of MuSK myasthenia gravis. Physiological Reports, 2015, 3, e12658.	0.7	13
15	Guidelines for pre-clinical animal and cellular models of MuSK-myasthenia gravis. Experimental Neurology, 2015, 270, 29-40.	2.0	27
16	Electrophysiological analysis of neuromuscular synaptic function in myasthenia gravis patients and animal models. Experimental Neurology, 2015, 270, 41-54.	2.0	43
17	Mouse Models of Myasthenia Gravis. Current Pharmaceutical Design, 2015, 21, 2468-2486.	0.9	7
18	Muscleâ€specific kinase (MuSK) autoantibodies suppress the MuSK pathway and ACh receptor retention at the mouse neuromuscular junction. Journal of Physiology, 2014, 592, 2881-2897.	1.3	29

#	Article	IF	CITATIONS
19	Clinical and scientific aspects of muscle-specific tyrosine kinase-related myasthenia gravis. Current Opinion in Neurology, 2014, 27, 558-565.	1.8	26
20	The Neuromuscular Junction: Measuring Synapse Size, Fragmentation and Changes in Synaptic Protein Density Using Confocal Fluorescence Microscopy. Journal of Visualized Experiments, 2014, , .	0.2	24
21	Effects of the ß2-Adrenoceptor Agonist, Albuterol, in a Mouse Model of Anti-MuSK Myasthenia Gravis. PLoS ONE, 2014, 9, e87840.	1.1	44
22	Migration of Resident Cardiac Stem Cells in Myocardial Infarction. Anatomical Record, 2013, 296, 184-191.	0.8	18
23	Pyridostigmine but not 3,4â€diaminopyridine exacerbates ACh receptor loss and myasthenia induced in mice by muscleâ€specific kinase autoantibody. Journal of Physiology, 2013, 591, 2747-2762.	1.3	63
24	Sequence of Age-Associated Changes to the Mouse Neuromuscular Junction and the Protective Effects of Voluntary Exercise. PLoS ONE, 2013, 8, e67970.	1.1	63
25	Neuregulin-1 Potentiates Agrin-Induced Acetylcholine Receptor Clustering via Muscle Specific Kinase Phosphorylation. Journal of Cell Science, 2012, 125, 1531-43.	1.2	43
26	Muscle specific kinase autoantibodies cause synaptic failure through progressive wastage of postsynaptic acetylcholine receptors. Experimental Neurology, 2012, 237, 286-295.	2.0	50
27	Muscle Specific Kinase: Organiser of synaptic membrane domains. International Journal of Biochemistry and Cell Biology, 2011, 43, 295-298.	1.2	60
28	Caveolae respond to cell stretch and contribute to stretch-induced signaling. Journal of Cell Science, 2011, 124, 3581-3590.	1.2	78
29	Patient autoantibodies deplete postsynaptic muscle-specific kinase leading to disassembly of the ACh receptor scaffold and myasthenia gravis in mice. Journal of Physiology, 2010, 588, 3217-3229.	1.3	84
30	Neural agrin increases postsynaptic ACh receptor packing by elevating rapsyn protein at the mouse neuromuscular synapse. Developmental Neurobiology, 2008, 68, 1153-1169.	1.5	30
31	Antiâ€MuSK patient antibodies disrupt the mouse neuromuscular junction. Annals of Neurology, 2008, 63, 782-789.	2.8	146
32	TRPC1 binds to caveolin-3 and is regulated by Src kinase – role in Duchenne muscular dystrophy. Journal of Cell Science, 2008, 121, 2246-2255.	1.2	153
33	Developmental increase in the amount of rapsyn per acetylcholine receptor promotes postsynaptic receptor packing and stability. Developmental Biology, 2007, 305, 262-275.	0.9	31
34	Neural agrin: A synaptic stabiliser. International Journal of Biochemistry and Cell Biology, 2007, 39, 863-867.	1.2	40
35	Increased ratio of rapsyn to ACh receptor stabilizes postsynaptic receptors at the mouse neuromuscular synapse. Journal of Physiology, 2005, 562, 673-685.	1.3	44
36	Neuregulin potentiates agrin-induced acetylcholine receptor clustering in myotubes. NeuroReport, 2004, 15, 2501-2505.	0.6	17

#	Article	IF	CITATIONS
37	Regional differences in sympathetic purinergic transmission along the length of the mouse vas deferens. Synapse, 2003, 47, 225-235.	0.6	16
38	GABARAP and GABAA Receptor Clustering. Neuron, 2002, 33, 4-6.	3.8	9
39	Spatial distribution and developmental appearance of postjunctional P2X1 receptors on smooth muscle cells of the mouse vas deferens. Synapse, 2001, 42, 1-11.	0.6	17
40	Structure and chromosome location of the mouse P2X ₁ purinoceptor gene <i>(P2rx1)</i> . Cytogenetic and Genome Research, 2001, 92, 333-336.	0.6	5
41	Overexpression of rapsyn modifies the intracellular trafficking of acetylcholine receptors. Journal of Neuroscience Research, 2000, 60, 155-163.	1.3	7
42	Development of fast purinergic transmission in the mouse vas deferens. Synapse, 2000, 37, 283-291.	0.6	24
43	Overexpression of rapsyn inhibits agrin-induced acetylcholine receptor clustering in muscle cells. Journal of Neurocytology, 1999, 28, 763-775.	1.6	21
44	Clustering of GABAAReceptors by Rapsyn/43kD Proteinin Vitro. Molecular and Cellular Neurosciences, 1997, 8, 430-438.	1.0	33
45	Rapsyn and Agrin Slow the Metabolic Degradation of the Acetylcholine Receptor. Molecular and Cellular Neurosciences, 1997, 10, 16-26.	1.0	33
46	ACETYLCHOLINE RECEPTORS AND THE CYTOSKELETAL CONNECTION. Clinical and Experimental Pharmacology and Physiology, 1995, 22, 961-965.	0.9	16
47	43K Protein and Acetylcholine Receptors Colocalize during the Initial Stages of Neuromuscular Synapse Formation in Vivo. Developmental Biology, 1993, 155, 275-280.	0.9	80
48	Clustering and immobilization of acetylcholine receptors by the 43-kD protein: a possible role for dystrophin-related protein Journal of Cell Biology, 1993, 123, 729-740.	2.3	107
49	Recombinant neuromuscular synapses. BioEssays, 1992, 14, 671-679.	1.2	14
50	Mutagenesis of the 43-kD postsynaptic protein defines domains involved in plasma membrane targeting and AChR clustering Journal of Cell Biology, 1991, 115, 1713-1723.	2.3	85
51	ACh receptor-rich membrane domains organized in fibroblasts by recombinant 43-kildalton protein. Science, 1991, 251, 568-570.	6.0	201
52	The distribution of intracellular acetylcholine receptors and nuclei in developing avian fast-twitch muscle fibres during synapse elimination. Journal of Neurocytology, 1989, 18, 241-255.	1.6	10
53	Elimination of distributed acetylcholine receptor clusters from developing fast-twitch fibres in an avian muscle. Journal of Neurocytology, 1987, 16, 1-10.	1.6	15
54	Elimination of distributed synaptic acetylcholine receptor clusters on developing avian fast-twitch muscle fibres accompanies loss of polyneuronal innervation. Journal of Neurocytology, 1987, 16, 785-797.	1.6	15

#	Article	IF	CITATIONS
55	The role of innervation in the establishment of the topographical distribution of primary myotube types during development. Journal of Neurocytology, 1986, 15, 397-405.	1.6	44
56	Spatial distribution and size of acetylcholine receptor clusters determined by motor nerves in developing chick muscles. Journal of Neurocytology, 1985, 14, 309-325.	1.6	19
57	Differentiation of fiber types in wing muscles during embryonic development: Effect of neural tube removal. Developmental Biology, 1984, 106, 457-468.	0.9	92