
Xiao-Bo Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4983867/publications.pdf Version: 2024-02-01

XIAO-BO LI

#	Article	IF	CITATIONS
1	Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy and Environmental Science, 2019, 12, 322-333.	15.6	1,078
2	Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodiumâ€lon Batteries with Ultralong Cycle Life. Advanced Materials, 2015, 27, 7861-7866.	11.1	1,055
3	Carbon Anode Materials for Advanced Sodiumâ€ l on Batteries. Advanced Energy Materials, 2017, 7, 1602898.	10.2	858
4	Interfacial Design of Dendriteâ€Free Zinc Anodes for Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 13180-13191.	7.2	727
5	The Threeâ€Dimensional Dendriteâ€Free Zinc Anode on a Copper Mesh with a Zincâ€Oriented Polyacrylamide Electrolyte Additive. Angewandte Chemie - International Edition, 2019, 58, 15841-15847.	7.2	648
6	Advancements and Challenges in Potassium Ion Batteries: A Comprehensive Review. Advanced Functional Materials, 2020, 30, 1909486.	7.8	570
7	Largeâ€Area Carbon Nanosheets Doped with Phosphorus: A Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Advanced Science, 2017, 4, 1600243.	5.6	450
8	NiCo ₂ O ₄ -based materials for electrochemical supercapacitors. Journal of Materials Chemistry A, 2014, 2, 14759-14772.	5.2	420
9	Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. Journal of Power Sources, 2015, 273, 584-590.	4.0	409
10	Revealing the role of crystal orientation of protective layers for stable zinc anode. Nature Communications, 2020, 11, 3961.	5.8	378
11	3D Printed Graphene Based Energy Storage Devices. Scientific Reports, 2017, 7, 42233.	1.6	345
12	Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy, 2019, 57, 728-736.	8.2	323
13	A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge. Energy and Environmental Science, 2013, 6, 3665.	15.6	293
14	Tailoring Rodâ€Like FeSe ₂ Coated with Nitrogenâ€Doped Carbon for Highâ€Performance Sodium Storage. Advanced Functional Materials, 2018, 28, 1801765.	7.8	287
15	Porous NiCo ₂ O ₄ spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. Journal of Materials Chemistry A, 2015, 3, 866-877.	5.2	282
16	Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Advances, 2011, 1, 1171.	1.7	278
17	Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy, 2021, 83, 105854.	8.2	264
18	Grapheneâ€Rich Wrapped Petal‣ike Rutile TiO ₂ tuned by Carbon Dots for Highâ€Performance Sodium Storage. Advanced Materials, 2016, 28, 9391-9399.	11.1	262

#	Article	IF	CITATIONS
19	H ⁺ â€Insertion Boosted αâ€MnO ₂ for an Aqueous Znâ€Ion Battery. Small, 2020, 16, e1905842.	5.2	260
20	Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy, 2019, 65, 104038.	8.2	250
21	High Energy Density Asymmetric Supercapacitors From Mesoporous NiCo2S4 Nanosheets. Electrochimica Acta, 2015, 174, 238-245.	2.6	247
22	Hierarchical Hollowâ€Microsphere Metal–Selenide@Carbon Composites with Rational Surface Engineering for Advanced Sodium Storage. Advanced Energy Materials, 2019, 9, 1803035.	10.2	234
23	Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: Understanding of its electrochemical properties. Journal of Power Sources, 2014, 267, 888-900.	4.0	228
24	Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property. Nano Energy, 2018, 48, 617-629.	8.2	227
25	Advanced Hierarchical Vesicular Carbon Coâ€Doped with S, P, N for Highâ€Rate Sodium Storage. Advanced Science, 2018, 5, 1800241.	5.6	225
26	First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. Journal of Materials Chemistry A, 2014, 2, 5358.	5.2	222
27	Ti ³⁺ Selfâ€Doped Dark Rutile TiO ₂ Ultrafine Nanorods with Durable Highâ€Rate Capability for Lithium″on Batteries. Advanced Functional Materials, 2015, 25, 6793-6801.	7.8	221
28	One-Dimensional Rod-Like Sb ₂ S ₃ -Based Anode for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 19362-19369.	4.0	218
29	Carbon dots supported upon N-doped TiO ₂ nanorods applied into sodium and lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 5648-5655.	5.2	215
30	Oxygenated Edge Plane Sites Slow the Electron Transfer of the Ferro-/Ferricyanide Redox Couple at Graphite Electrodes. ChemPhysChem, 2006, 7, 1337-1344.	1.0	214
31	The development of carbon dots: From the perspective of materials chemistry. Materials Today, 2021, 51, 188-207.	8.3	213
32	Oxygen Vacancies Evoked Blue TiO ₂ (B) Nanobelts with Efficiency Enhancement in Sodium Storage Behaviors. Advanced Functional Materials, 2017, 27, 1700856.	7.8	212
33	Sodium/Lithium Storage Behavior of Antimony Hollow Nanospheres for Rechargeable Batteries. ACS Applied Materials & Interfaces, 2014, 6, 16189-16196.	4.0	199
34	Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. Energy Storage Materials, 2018, 12, 310-323.	9.5	196
35	Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies. ACS Applied Materials & Interfaces, 2016, 8, 9142-9151.	4.0	193
36	Electrochemical exfoliation of graphene-like two-dimensional nanomaterials. Nanoscale, 2019, 11, 16-33.	2.8	184

#	Article	IF	CITATIONS
37	Kilogram-Scale Synthesis and Functionalization of Carbon Dots for Superior Electrochemical Potassium Storage. ACS Nano, 2021, 15, 6872-6885.	7.3	184
38	A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery. Waste Management, 2019, 85, 529-537.	3.7	182
39	Garnet Solid Electrolyte for Advanced Allâ€Solidâ€State Li Batteries. Advanced Energy Materials, 2021, 11, 2000648.	10.2	182
40	Plasmaâ€Induced Amorphous Shell and Deep Cationâ€Site S Doping Endow TiO ₂ with Extraordinary Sodium Storage Performance. Advanced Materials, 2018, 30, e1801013.	11.1	180
41	3D interconnected ultrathin cobalt selenide nanosheets as cathode materials for hybrid supercapacitors. Electrochimica Acta, 2018, 269, 30-37.	2.6	170
42	Engineering Fe–N Coordination Structures for Fast Redox Conversion in Lithium–Sulfur Batteries. Advanced Materials, 2021, 33, e2100171.	11.1	167
43	Anatase TiO ₂ nanocubes for fast and durable sodium ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 8800-8807.	5.2	163
44	Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries. Journal of Power Sources, 2014, 256, 258-263.	4.0	162
45	Layerâ€Tunable Phosphorene Modulated by the Cation Insertion Rate as a Sodiumâ€Storage Anode. Advanced Materials, 2017, 29, 1702372.	11.1	162
46	Nitrogen Doped/Carbon Tuning Yolk‣ike TiO ₂ and Its Remarkable Impact on Sodium Storage Performances. Advanced Energy Materials, 2017, 7, 1600173.	10.2	159
47	Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 2971-2977.	5.2	156
48	Pseudoâ€Bonding and Electricâ€Field Harmony for Liâ€Rich Mnâ€Based Oxide Cathode. Advanced Functional Materials, 2020, 30, 2004302.	7.8	149
49	Controllable Chain‣ength for Covalent Sulfur–Carbon Materials Enabling Stable and High apacity Sodium Storage. Advanced Energy Materials, 2019, 9, 1803478.	10.2	145
50	Controllable Interlayer Spacing of Sulfurâ€Doped Graphitic Carbon Nanosheets for Fast Sodiumâ€lon Batteries. Small, 2017, 13, 1700762.	5.2	144
51	Lithium Titanate Tailored by Cathodically Induced Graphene for an Ultrafast Lithium Ion Battery. Advanced Functional Materials, 2014, 24, 4349-4356.	7.8	142
52	High Ion onducting Solid‧tate Composite Electrolytes with Carbon Quantum Dot Nanofillers. Advanced Science, 2018, 5, 1700996.	5.6	141
53	Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions. Energy and Environmental Science, 2020, 13, 1568-1592.	15.6	140
54	Prelithiation/Presodiation Techniques for Advanced Electrochemical Energy Storage Systems: Concepts, Applications, and Perspectives. Advanced Functional Materials, 2021, 31, 2005581.	7.8	138

#	Article	IF	CITATIONS
55	Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery. ACS Energy Letters, 2021, 6, 675-683.	8.8	135
56	Yolk–Shell-Structured Bismuth@N-Doped Carbon Anode for Lithium-Ion Battery with High Volumetric Capacity. ACS Applied Materials & Interfaces, 2019, 11, 10829-10840.	4.0	132
57	Ultrafast Sodium Full Batteries Derived from Xĩ£¿Fe (X = Co, Ni, Mn) Prussian Blue Analogs. Advanced Materials, 2019, 31, e1806092.	11.1	132
58	NiCo2S4 hollow microsphere decorated by acetylene black for high-performance asymmetric supercapacitor. Electrochimica Acta, 2015, 186, 562-571.	2.6	130
59	Metal–Organic Frameworkâ€Đerived Materials for Sodium Energy Storage. Small, 2018, 14, 1702648.	5.2	129
60	Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Materials, 2020, 32, 306-319.	9.5	126
61	An Asymmetric Ultracapacitors Utilizing α-Co(OH)2/Co3O4 Flakes Assisted by Electrochemically Alternating Voltage. Electrochimica Acta, 2014, 141, 234-240.	2.6	121
62	Uniform and dendrite-free zinc deposition enabled by <i>in situ</i> formed AgZn ₃ for the zinc metal anode. Journal of Materials Chemistry A, 2021, 9, 8452-8461.	5.2	121
63	Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries. Journal of Power Sources, 2015, 284, 227-235.	4.0	119
64	Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency. Nano Energy, 2019, 64, 103937.	8.2	118
65	Heteroatom-doped carbon inlaid with Sb2X3 (XÂ=ÂS, Se) nanodots for high-performance potassium-ion batteries. Chemical Engineering Journal, 2020, 385, 123838.	6.6	118
66	Alternating Voltage Introduced NiCo Double Hydroxide Layered Nanoflakes for an Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2015, 7, 22741-22744.	4.0	117
67	Three-Dimensional Hierarchical Framework Assembled by Cobblestone-Like CoSe ₂ @C Nanospheres for Ultrastable Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 14716-14726.	4.0	116
68	The Threeâ€Dimensional Dendriteâ€Free Zinc Anode on a Copper Mesh with a Zincâ€Oriented Polyacrylamide Electrolyte Additive. Angewandte Chemie, 2019, 131, 15988-15994.	1.6	116
69	A kinetically well-matched full-carbon sodium-ion capacitor. Journal of Materials Chemistry A, 2019, 7, 13540-13549.	5.2	116
70	Functionalized carbon dots for advanced batteries. Energy Storage Materials, 2021, 37, 8-39.	9.5	116
71	Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode. EScience, 2022, 2, 116-124.	25.0	116
72	A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries. Physical Chemistry Chemical Physics. 2013, 15, 14357.	1.3	115

#	Article	IF	CITATIONS
73	Interfacial challenges towards stable Li metal anode. Nano Energy, 2021, 79, 105507.	8.2	115
74	Cube-shaped Porous Carbon Derived from MOF-5 as Advanced Material for Sodium-Ion Batteries. Electrochimica Acta, 2016, 196, 413-421.	2.6	114
75	Graphitic Carbon Quantum Dots Modified Nickel Cobalt Sulfide as Cathode Materials for Alkaline Aqueous Batteries. Nano-Micro Letters, 2020, 12, 16.	14.4	114
76	Multidimensional Evolution of Carbon Structures Underpinned by Temperatureâ€Induced Intermediate of Chloride for Sodiumâ€Ion Batteries. Advanced Science, 2018, 5, 1800080.	5.6	112
77	Insights into Enhanced Capacitive Behavior of Carbon Cathode for Lithium Ion Capacitors: The Coupling of Pore Size and Graphitization Engineering. Nano-Micro Letters, 2020, 12, 121.	14.4	111
78	Hierarchical NiS ₂ Modified with Bifunctional Carbon for Enhanced Potassiumâ€lon Storage. Advanced Functional Materials, 2019, 29, 1903454.	7.8	109
79	Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery. Chemical Engineering Journal, 2020, 402, 125509.	6.6	109
80	The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: The influences of morphology structure, phase evolution and interface property. Energy Storage Materials, 2019, 16, 267-280.	9.5	107
81	A study into the extracted ion number for NASICON structured Na ₃ V ₂ (PO ₄) ₃ in sodium-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 17681-17687.	1.3	106
82	Plasma‣trengthened Lithiophilicity of Copper Oxide Nanosheet–Decorated Cu Foil for Stable Lithium Metal Anode. Advanced Science, 2019, 6, 1901433.	5.6	106
83	Simultaneously Regulating the Ion Distribution and Electric Field to Achieve Dendriteâ€Free Zn Anode. Small, 2020, 16, e2000929.	5.2	106
84	Electroanalytical Determination of Cadmium(II) and Lead(II) Using an <i>in-situ</i> Bismuth Film Modified Edge Plane Pyrolytic Graphite Electrode. Analytical Sciences, 2007, 23, 283-289.	0.8	105
85	Comprehensive Understanding of Sodiumâ€lon Capacitors: Definition, Mechanisms, Configurations, Materials, Key Technologies, and Future Developments. Advanced Energy Materials, 2021, 11, 2003804.	10.2	105
86	Investigation of the Sodium Ion Pathway and Cathode Behavior in Na ₃ V ₂ (PO ₄) ₂ F ₃ Combined via a First Principles Calculation. Langmuir, 2014, 30, 12438-12446.	1.6	104
87	Nickel Chelate Derived NiS ₂ Decorated with Bifunctional Carbon: An Efficient Strategy to Promote Sodium Storage Performance. Advanced Functional Materials, 2018, 28, 1803690.	7.8	104
88	A Functional Organic Zinc-Chelate Formation with Nanoscaled Granular Structure Enabling Long-Term and Dendrite-Free Zn Anodes. ACS Nano, 2022, 16, 9736-9747.	7.3	104
89	Molybdenum Phosphide: A Conversion-type Anode for Ultralong-Life Sodium-Ion Batteries. Chemistry of Materials, 2017, 29, 7313-7322.	3.2	102
90	Aqueous Sodiumâ€ion Battery using a Na ₃ V ₂ (PO ₄) ₃ Electrode. ChemElectroChem, 2014, 1, 871-876.	1.7	101

#	Article	IF	CITATIONS
91	Na2FePO4F cathode utilized in hybrid-ion batteries: a mechanistic exploration of ion migration and diffusion capability. Journal of Materials Chemistry A, 2014, 2, 2571.	5.2	101
92	N-Rich carbon-coated Co ₃ S ₄ ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries. Nanoscale, 2018, 10, 18786-18794.	2.8	101
93	Carbon quantum dot coated Mn ₃ O ₄ with enhanced performances for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16824-16830.	5.2	100
94	Rodlike Sb ₂ Se ₃ Wrapped with Carbon: The Exploring of Electrochemical Properties in Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 34979-34989.	4.0	100
95	Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation. Energy Storage Materials, 2020, 27, 124-132.	9.5	98
96	Graphene quantum dots enable dendrite-free zinc ion battery. Nano Energy, 2022, 92, 106752.	8.2	98
97	Enhanced sodium storage behavior of carbon coated anatase TiO ₂ hollow spheres. Journal of Materials Chemistry A, 2015, 3, 18944-18952.	5.2	96
98	Octahedral Sb2O3 as high-performance anode for lithium and sodium storage. Materials Chemistry and Physics, 2019, 223, 46-52.	2.0	95
99	Metalorganic Quantum Dots and Their Grapheneâ€Like Derivative Porous Graphitic Carbon for Advanced Lithiumâ€lon Hybrid Supercapacitor. Advanced Energy Materials, 2019, 9, 1802878.	10.2	94
100	High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Science Bulletin, 2021, 66, 1858-1868.	4.3	94
101	A promising Na3V2(PO4)3 cathode for use in the construction of high energy batteries. Physical Chemistry Chemical Physics, 2014, 16, 3055.	1.3	92
102	Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries. ACS Nano, 2019, 13, 10787-10797.	7.3	90
103	Understanding crystal structures, ion diffusion mechanisms and sodium storage behaviors of NASICON materials. Energy Storage Materials, 2021, 34, 171-193.	9.5	90
104	High‥ield Carbon Dots Interlayer for Ultraâ€&table Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	90
105	An electrochemical exploration of hollow NiCo 2 O 4 submicrospheres and its capacitive performances. Journal of Power Sources, 2015, 287, 307-315.	4.0	89
106	Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non-aqueous media. Journal of Materials Chemistry A, 2013, 1, 5962.	5.2	88
107	Multifunctional dual Na ₃ V ₂ (PO ₄) ₂ F ₃ cathode for both lithium-ion and sodium-ion batteries. RSC Advances, 2014, 4, 11375-11383.	1.7	88
108	High capacity NiCo 2 O 4 nanorods as electrode materials for supercapacitor. Journal of Alloys and Compounds, 2014, 617, 988-993.	2.8	88

#	Article	IF	CITATIONS
109	Anatase inverse opal TiO2-x@N-doped C induced the dominant pseudocapacitive effect for durable and fast lithium/sodium storage. Electrochimica Acta, 2019, 299, 540-548.	2.6	87
110	Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries. Science Bulletin, 2020, 65, 1003-1012.	4.3	87
111	An Electrochemical Study of Sb/Acetylene Black Composite as Anode for Sodium-Ion Batteries. Electrochimica Acta, 2014, 146, 328-334.	2.6	84
112	N-rich carbon coated CoSnO ₃ derived from <i>in situ</i> construction of a Co–MOF with enhanced sodium storage performance. Journal of Materials Chemistry A, 2018, 6, 4839-4847.	5.2	84
113	Bi Dots Confined by Functional Carbon as Highâ€Performance Anode for Lithium Ion Batteries. Advanced Functional Materials, 2021, 31, 2000756.	7.8	84
114	2D molybdenum disulphide (2D-MoS ₂) modified electrodes explored towards the oxygen reduction reaction. Nanoscale, 2016, 8, 14767-14777.	2.8	83
115	Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. Materials Chemistry and Physics, 2019, 229, 303-309.	2.0	82
116	Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior. Journal of Power Sources, 2016, 325, 25-34.	4.0	81
117	Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries. Green Chemistry, 2017, 19, 4622-4632.	4.6	81
118	Stabilizing Intermediate Phases via Efficient Entrapment Effects of Layered VS ₄ /SnS@C Heterostructure for Ultralong Lifespan Potassiumâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2103802.	7.8	81
119	Challenges and Strategies towards Singleâ€Crystalline Niâ€Rich Layered Cathodes. Advanced Energy Materials, 2022, 12, .	10.2	81
120	Electrochemically cathodic exfoliation of graphene sheets in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and their electrochemical properties. Electrochimica Acta, 2013, 113, 9-16.	2.6	80
121	A new approach for the improved interpretation of capacitance measurements for materials utilised in energy storage. RSC Advances, 2015, 5, 12782-12791.	1.7	79
122	Understanding the Physicoelectrochemical Properties of Carbon Nanotubes: Current State of the Art. Electroanalysis, 2010, 22, 7-19.	1.5	78
123	Pinecone-like hierarchical anatase TiO ₂ bonded with carbon enabling ultrahigh cycling rates for sodium storage. Journal of Materials Chemistry A, 2016, 4, 12591-12601.	5.2	78
124	Strongly Coupled Interfacial Engineering Inspired by Robotic Arms Enable Highâ€Performance Sodiumâ€ion Capacitors. Advanced Functional Materials, 2022, 32, .	7.8	78
125	Demystifying the Lattice Oxygen Redox in Layered Oxide Cathode Materials of Lithium-Ion Batteries. ACS Nano, 2021, 15, 6061-6104.	7.3	77
126	Sizeâ€Tunable Olive‣ike Anatase TiO ₂ Coated with Carbon as Superior Anode for Sodium″on Batteries. Small, 2016, 12, 5554-5563.	5.2	76

#	Article	IF	CITATIONS
127	Confined N-CoSe2 active sites boost bifunctional oxygen electrocatalysis for rechargeable Zn–air batteries. Nano Energy, 2022, 91, 106675.	8.2	76
128	Advanced Preâ€Diagnosis Method of Biomass Intermediates Toward High Energy Dualâ€Carbon Potassiumâ€lon Capacitor. Advanced Energy Materials, 2022, 12, .	10.2	76
129	Ultrafine nickel oxide quantum dots enbedded with few-layer exfoliative graphene for an asymmetric supercapacitor: Enhanced capacitances by alternating voltage. Journal of Power Sources, 2015, 298, 241-248.	4.0	75
130	Nickel nanoparticles supported on nitrogen-doped honeycomb-like carbon frameworks for effective methanol oxidation. RSC Advances, 2017, 7, 14152-14158.	1.7	75
131	Highâ€Throughput Production of Cheap Mineralâ€Based Heterostructures for High Power Sodium Ion Capacitors. Advanced Functional Materials, 2022, 32, .	7.8	75
132	Engineering 1D chain-like architecture with conducting polymer towards ultra-fast and high-capacity energy storage by reinforced pseudo-capacitance. Nano Energy, 2018, 54, 26-38.	8.2	74
133	3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors. Electrochimica Acta, 2014, 149, 144-151.	2.6	72
134	The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: Towards long-time cycling and superior rate sodium-ion battery cathode. Journal of Power Sources, 2017, 366, 249-258.	4.0	72
135	Biâ€Based Electrode Materials for Alkali Metalâ€ion Batteries. Small, 2020, 16, e2004022.	5.2	71
136	An electrochemical investigation of rutile TiO ₂ microspheres anchored by nanoneedle clusters for sodium storage. Physical Chemistry Chemical Physics, 2015, 17, 15764-15770.	1.3	70
137	Electrochemical Exfoliation of Graphite into Nitrogen-doped Graphene in Glycine Solution and its Energy Storage Properties. Electrochimica Acta, 2016, 204, 100-107.	2.6	70
138	A facile annealing strategy for achieving <i>in situ</i> controllable Cu ₂ O nanoparticle decorated copper foil as a current collector for stable lithium metal anodes. Journal of Materials Chemistry A, 2018, 6, 18444-18448.	5.2	70
139	Palladium Sub-Nanoparticle Decorated â€~Bamboo' Multi-Walled Carbon Nanotubes Exhibit Electrochemical Metastability: Voltammetric Sensing in Otherwise Inaccessible pH Ranges. Electroanalysis, 2006, 18, 2481-2485.	1.5	69
140	High-voltage NASICON Sodium Ion Batteries: Merits of Fluorine Insertion. Electrochimica Acta, 2014, 146, 142-150.	2.6	69
141	3D hollow porous carbon microspheres derived from Mn-MOFs and their electrochemical behavior for sodium storage. Journal of Materials Chemistry A, 2017, 5, 23550-23558.	5.2	69
142	Surfaceâ€Driven Energy Storage Behavior of Dualâ€Heteroatoms Functionalized Carbon Material. Advanced Functional Materials, 2019, 29, 1900941.	7.8	68
143	Enabling the sustainable recycling of LiFePO ₄ from spent lithium-ion batteries. Green Chemistry, 2022, 24, 2506-2515.	4.6	68
144	Atomical Reconstruction and Cationic Reordering for Nickelâ€Rich Layered Cathodes. Advanced Energy Materials, 2022, 12, .	10.2	67

#	Article	IF	CITATIONS
145	Electrochemically Exfoliated Phosphorene–Graphene Hybrid for Sodiumâ€lon Batteries. Small Methods, 2019, 3, 1800328.	4.6	66
146	The investigation of the electrochemically supercapacitive performances of mesoporous CuCo ₂ S ₄ . RSC Advances, 2016, 6, 84236-84241.	1.7	65
147	Binding low crystalline MoS ₂ nanoflakes on nitrogen-doped carbon nanotube: towards high-rate lithium and sodium storage. Journal of Materials Chemistry A, 2019, 7, 6439-6449.	5.2	65
148	Interfacial Bonding of Metalâ€Sulfides with Double Carbon for Improving Reversibility of Advanced Alkaliâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1910599.	7.8	65
149	Ultra-Low-Dose Pre-Metallation Strategy Served for Commercial Metal-Ion Capacitors. Nano-Micro Letters, 2022, 14, 53.	14.4	65
150	Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance. Nanoscale, 2020, 12, 3677-3685.	2.8	64
151	Graphene electrochemical supercapacitors: the influence of oxygen functional groups. Chemical Communications, 2012, 48, 2770.	2.2	62
152	Hexagonal nickel oxide nanoplate-based electrochemical supercapacitor. Journal of Materials Science, 2012, 47, 503-507.	1.7	62
153	Mechanistic investigation of ion migration in Na ₃ V ₂ (PO ₄) ₂ F ₃ hybrid-ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 159-165.	1.3	62
154	Dianion Induced Electron Delocalization of Trifunctional Electrocatalysts for Rechargeable Zn–Air Batteries and Selfâ€Powered Water Splitting. Advanced Functional Materials, 2022, 32, .	7.8	62
155	Enhanced stability of sodium storage exhibited by carbon coated Sb2S3 hollow spheres. Materials Chemistry and Physics, 2018, 203, 185-192.	2.0	61
156	Cathodically induced antimony for rechargeable Li-ion and Na-ion batteries: The influences of hexagonal and amorphous phase. Journal of Power Sources, 2015, 282, 358-367.	4.0	60
157	Voltageâ€Induced Highâ€Efficient In Situ Presodiation Strategy for Sodium Ion Capacitors. Small Methods, 2020, 4, 1900763.	4.6	60
158	Olivine LiMn _x Fe _{1â^'x} PO ₄ cathode materials for lithium ion batteries: restricted factors of rate performances. Journal of Materials Chemistry A, 2021, 9, 14214-14232.	5.2	60
159	Amorphous RuO2 coated on carbon spheres as excellent electrode materials for supercapacitors. RSC Advances, 2014, 4, 6927.	1.7	59
160	Carbon materials for high-performance lithium-ion capacitor. Current Opinion in Electrochemistry, 2020, 21, 31-39.	2.5	59
161	Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior. Journal of Materials Chemistry A, 2017, 5, 24353-24360.	5.2	58
162	The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. Science China Materials, 2019, 62, 1127-1138.	3.5	58

#	Article	IF	CITATIONS
163	High Sulfur-Doped Hard Carbon with Advanced Potassium Storage Capacity via a Molten Salt Method. ACS Applied Materials & Interfaces, 2020, 12, 30431-30437.	4.0	58
164	Electrode Kinetic Studies of the Hydroquinoneâ^'Benzoquinone System and the Reaction between Hydroquinone and Ammonia in Propylene Carbonate:  Application to the Indirect Electroanalytical Sensing of Ammonia. Journal of Physical Chemistry C, 2007, 111, 1496-1504.	1.5	57
165	Graphene ultracapacitors: structural impacts. Physical Chemistry Chemical Physics, 2013, 15, 4799.	1.3	57
166	Cypress leaf-like Sb as anode material for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 17549-17552.	5.2	57
167	3D Porous Carbon Encapsulated SnO2 Nanocomposite for Ultrastable Sodium Ion Batteries. Electrochimica Acta, 2016, 214, 156-164.	2.6	57
168	Advanced MoSe ₂ /Carbon Electrodes in Li/Naâ€lons Batteries. Advanced Materials Interfaces, 2020, 7, 1901651.	1.9	57
169	Edge Plane Sites on Highly Ordered Pyrolytic Graphite as Templates for Making Palladium Nanowires via Electrochemical Decoration. Journal of Physical Chemistry B, 2006, 110, 22306-22309.	1.2	56
170	Real-Time X-ray Imaging Reveals Interfacial Growth, Suppression, and Dissolution of Zinc Dendrites Dependent on Anions of Ionic Liquid Additives for Rechargeable Battery Applications. ACS Applied Materials & Interfaces, 2016, 8, 32031-32040.	4.0	56
171	Advanced Batteryâ€Type Anode Materials for Highâ€Performance Sodiumâ€Ion Capacitors. Small Methods, 2020, 4, 2000401.	4.6	56
172	Sodium titanate cuboid as advanced anode material for sodium ion batteries. Journal of Power Sources, 2016, 305, 200-208.	4.0	55
173	Antimony Anchored with Nitrogen-Doping Porous Carbon as a High-Performance Anode Material for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 26118-26125.	4.0	55
174	Ultra-stable carbon-coated sodium vanadium phosphate as cathode material for sodium-ion battery. Rare Metals, 2022, 41, 115-124.	3.6	55
175	Pencil drawn paper based supercapacitors. RSC Advances, 2016, 6, 81130-81141.	1.7	54
176	Carbon Dots Evoked Li Ion Dynamics for Solid State Battery. Small, 2021, 17, e2102978.	5.2	54
177	Electrochemical Investigation of Natural Ore Molybdenite (MoS ₂) as a First-Hand Anode for Lithium Storages. ACS Applied Materials & Interfaces, 2018, 10, 6378-6389.	4.0	52
178	Nextâ€Generation Additive Manufacturing: Tailorable Graphene/Polylactic(acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithiumâ€Ion Batteries. Batteries and Supercaps, 2019, 2, 448-453.	2.4	52
179	Molecularly Compensated Preâ€Metallation Strategy for Metalâ€Ion Batteries and Capacitors. Angewandte Chemie - International Edition, 2021, 60, 17070-17079.	7.2	52
180	Flower-like agglomerates of hydroxyapatite crystals formed on an egg-shell membrane. Colloids and Surfaces B: Biointerfaces, 2011, 82, 490-496.	2.5	51

#	Article	IF	CITATIONS
181	Element substitution of a spinel LiMn ₂ O ₄ cathode. Journal of Materials Chemistry A, 2021, 9, 21532-21550.	5.2	51
182	2D Hexagonal Boron Nitride (2Dâ€hBN) Explored as a Potential Electrocatalyst for the Oxygen Reduction Reaction. Electroanalysis, 2017, 29, 622-634.	1.5	50
183	Non-enzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes. Colloids and Surfaces B: Biointerfaces, 2010, 78, 363-366.	2.5	49
184	NiSb alloy hollow nanospheres as anode materials for rechargeable lithium ion batteries. Chemical Communications, 2014, 50, 8201-8203.	2.2	49
185	Uniform porous spinel NiCo2O4 with enhanced electrochemical performances. Journal of Alloys and Compounds, 2015, 632, 208-217.	2.8	49
186	Electrochemical Ammonia Gas Sensing in Nonaqueous Systems: A Comparison of Propylene Carbonate with Room Temperature Ionic Liquids. Electroanalysis, 2007, 19, 2194-2201.	1.5	48
187	Printable thin film supercapacitors utilizing single crystal cobalt hydroxidenanosheets. RSC Advances, 2012, 2, 1508-1515.	1.7	48
188	Interfacially Redistributed charge for robust lithium metal anode. Nano Energy, 2021, 87, 106212.	8.2	48
189	Understanding the Electrochemical Reactivity of Bamboo Multiwalled Carbon Nanotubes: the Presence of Oxygenated Species at Tube Ends May not Increase Electron Transfer Kinetics. Electroanalysis, 2006, 18, 2137-2140.	1.5	47
190	Room temperature ionic liquid assisted well-dispersed core-shell tin nanoparticles through cathodic corrosion. RSC Advances, 2013, 3, 18791.	1.7	47
191	Recent advances of composite electrolytes for solid-state Li batteries. Journal of Energy Chemistry, 2022, 67, 524-548.	7.1	47
192	Mesoporous-TiO2 nanoparticles based carbon paste electrodes exhibit enhanced electrochemical sensitivity for phenols. Electrochemistry Communications, 2009, 11, 1990-1995.	2.3	46
193	Size-Tunable Single-Crystalline Anatase TiO ₂ Cubes as Anode Materials for Lithium Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 3923-3930.	1.5	46
194	Mo-doped Gray Anatase TiO 2 : Lattice Expansion for Enhanced Sodium Storage. Electrochimica Acta, 2016, 219, 227-234.	2.6	46
195	Inhibition Role of Trace Metal Ion Additives on Zinc Dendrites during Plating and Striping Processes. Advanced Materials Interfaces, 2019, 6, 1901358.	1.9	46
196	Designing interfacial chemical bonds towards advanced metal-based energy-storage/conversion materials. Energy Storage Materials, 2020, 32, 477-496.	9.5	46
197	Reversible OP4 phase in P2–Na2/3Ni1/3Mn2/3O2 sodium ion cathode. Journal of Power Sources, 2021, 508, 230324.	4.0	46
198	Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries. Nano Energy, 2022, 99, 107426.	8.2	46

#	Article	IF	CITATIONS
199	Rose-like N-doped Porous Carbon for Advanced Sodium Storage. Electrochimica Acta, 2017, 240, 24-30.	2.6	45
200	Solid Solution Metal Chalcogenides for Sodiumâ€lon Batteries: The Recent Advances as Anodes. Small, 2021, 17, e2101058.	5.2	45
201	Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance. Energy Storage Materials, 2020, 24, 304-311.	9.5	44
202	The electrochemical oxidation of ammonia at boron-doped diamond electrodes exhibits analytically useful signals in aqueous solutions. Analyst, The, 2005, 130, 1345.	1.7	43
203	Comparison of the Ammoniacal Leaching Behavior of Layered LiNi _{<i>x</i>} Co _{<i>y</i>} Mn _{1–<i>x</i>–<i>y</i>} O ₂ (<i>x</i> = 1/3, 0.5, 0.8) Cathode Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 7750-7759.	3.2	43
204	Exploration and Size Engineering from Natural Chalcopyrite to High-Performance Electrode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 6154-6165.	4.0	43
205	N,S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode. Energy Storage Materials, 2021, 42, 679-686.	9.5	43
206	Dual Functions of Potassium Antimony(III)â€Tartrate in Tuning Antimony/Carbon Composites for Longâ€Life Naâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1705744.	7.8	42
207	Engineering metal sulfides with hierarchical interfaces for advanced sodium-ion storage systems. Journal of Materials Chemistry A, 2020, 8, 5284-5297.	5.2	42
208	Natural Stibnite for Lithium-/Sodium-Ion Batteries: Carbon Dots Evoked High Initial Coulombic Efficiency. Nano-Micro Letters, 2022, 14, .	14.4	42
209	Chalcopyrite-Derived Na <i>_x</i> MO ₂ (M = Cu, Fe, Mn) Cathode: Tuning Impurities for Self-Doping. ACS Applied Materials & Interfaces, 2020, 12, 2432-2444.	4.0	41
210	Recent development of LiNixCoyMnzO2: Impact of micro/nano structures for imparting improvements in lithium batteries. Transactions of Nonferrous Metals Society of China, 2013, 23, 108-119.	1.7	40
211	Hollow-sphere ZnSe wrapped around carbon particles as a cycle-stable and high-rate anode material for reversible Li-ion batteries. New Journal of Chemistry, 2017, 41, 6693-6699.	1.4	40
212	Revealing the activation effects of high valence cobalt in CoMoO4 towards highly reversible conversion. Nano Energy, 2020, 68, 104333.	8.2	40
213	Interfacial Design of Dendriteâ€Free Zinc Anodes for Aqueous Zincâ€Ion Batteries. Angewandte Chemie, 2020, 132, 13280-13291.	1.6	40
214	AFM Studies of Metal Deposition: Instantaneous Nucleation and the Growth of Cobalt Nanoparticles on Boron-Doped Diamond Electrodes. ChemPhysChem, 2006, 7, 704-709.	1.0	39
215	Mechanistic Studies of the Electro-oxidation Pathway of Ammonia in Several Room-Temperature Ionic Liquids. Journal of Physical Chemistry C, 2007, 111, 9562-9572.	1.5	39
216	Copper-substituted NaxMO2 (MÂ=ÂFe, Mn) cathodes for sodium ion batteries: Enhanced cycling stability through suppression of Mn(III) formation. Chemical Engineering Journal, 2021, 406, 126830.	6.6	39

#	Article	IF	CITATIONS
217	Microstructured Sulfur-Doped Carbon-Coated Fe ₇ S ₈ Composite for High-Performance Lithium and Sodium Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 11783-11794.	3.2	38
218	Boosting the ionic conductivity of PEO electrolytes by waste eggshell-derived fillers for high-performance solid lithium/sodium batteries. Materials Chemistry Frontiers, 2021, 5, 1315-1323.	3.2	38
219	Engineering the morphology/porosity of oxygen-doped carbon for sulfur host as lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 60, 531-545.	7.1	38
220	Enhanced electrochemical capacitance of nanoporous NiO based on an eggshell membrane. RSC Advances, 2012, 2, 1743.	1.7	37
221	Natural stibnite ore (Sb ₂ S ₃) embedded in sulfur-doped carbon sheets: enhanced electrochemical properties as anode for sodium ions storage. RSC Advances, 2019, 9, 15210-15216.	1.7	37
222	Electrochemically Alternating Voltage Induced Mn3O4/Graphite Powder Composite with Enhanced Electrochemical Performances for Lithium-ion Batteries. Electrochimica Acta, 2015, 155, 157-163.	2.6	36
223	Chemâ€Bonding and Physâ€Trapping Se Electrode for Longâ€Life Rechargeable Batteries. Advanced Functional Materials, 2019, 29, 1809014.	7.8	36
224	Coral-like carbon-wrapped NiCo alloys derived by emulsion aggregation strategy for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2020, 573, 96-104.	5.0	36
225	Structure and Interface Modification of Carbon Dots for Electrochemical Energy Application. Small, 2021, 17, e2102091.	5.2	36
226	Hierarchical bismuth composite for fast lithium storage: Carbon dots tuned interfacial interaction. Energy Storage Materials, 2022, 44, 145-155.	9.5	35
227	The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes. Physical Chemistry Chemical Physics, 2013, 15, 15098.	1.3	34
228	Nitrogen-doped Carbon Coated Na3V2(PO4)3 with Superior Sodium Storage Capability. Chemical Research in Chinese Universities, 2020, 36, 459-466.	1.3	34
229	Pseudocapacitive and battery-type organic polymer electrodes for a 1.9ÂV hybrid supercapacitor with a record concentration of ammonium acetate. Journal of Power Sources, 2021, 511, 230434.	4.0	34
230	Chemical-Mechanical Effects in Ni-Rich Cathode Materials. Chemistry of Materials, 2022, 34, 1509-1523.	3.2	34
231	Single Particle Electrochemistry of Collision. Small, 2019, 15, e1804908.	5.2	33
232	Revealing dual capacitive mechanism of carbon cathode toward ultrafast quasi-solid-state lithium ion capacitors. Journal of Energy Chemistry, 2021, 60, 209-221.	7.1	33
233	Molecular-Level CuS@S Hybrid Nanosheets Constructed by Mineral Chemistry for Energy Storage Systems. ACS Applied Materials & amp; Interfaces, 2018, 10, 43669-43681.	4.0	32
234	Facile synthetic strategy to uniform Cu9S5 embedded into carbon: A novel anode for sodium-ion batteries. Journal of Alloys and Compounds, 2018, 762, 473-479.	2.8	32

#	Article	IF	CITATIONS
235	Sulfur-Doped TiO ₂ Anchored on a Large-Area Carbon Sheet as a High-Performance Anode for Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2019, 11, 44170-44178.	4.0	32
236	Sustainable recovery of nickel, molybdenum, and vanadium from spent hydroprocessing catalysts by an integrated selective route. Journal of Cleaner Production, 2020, 252, 119763.	4.6	32
237	Functional carbon materials processed by NH3 plasma for advanced full-carbon sodium-ion capacitors. Chemical Engineering Journal, 2021, 420, 129647.	6.6	32
238	An Amperometric Biosensor for Glucose Based on Electrodeposited Redox Polymer/Glucose Oxidase Film on a Gold Electrode. Analytical Sciences, 2003, 19, 1259-1263.	0.8	31
239	Designing Rational Interfacial Bonds for Hierarchical Mineralâ€Type Trogtalite with Double Carbon towards Ultraâ€Fast Sodiumâ€Ions Storage Properties. Advanced Functional Materials, 2021, 31, 2100156.	7.8	31
240	Cationic-potential tuned biphasic layered cathodes for stable desodiation/sodiation. Science Bulletin, 2022, 67, 1589-1602.	4.3	31
241	Lithium-Ion-Transfer Kinetics of Single LiFePO ₄ Particles. Journal of Physical Chemistry Letters, 2018, 9, 4976-4980.	2.1	30
242	Dandelion-shaped TiO ₂ /multi-layer graphene composed of TiO ₂ (B) fibrils and anatase TiO ₂ pappi utilizing triphase boundaries for lithium storage. Journal of Materials Chemistry A, 2016, 4, 8762-8768.	5.2	29
243	Fe2O3 embedded in the nitrogen-doped carbon matrix with strong C-O-Fe oxygen-bridge bonds for enhanced sodium storages. Materials Chemistry and Physics, 2018, 216, 58-63.	2.0	29
244	Highly stable zinc metal anode enabled by oxygen functional groups for advanced Zn-ion supercapacitors. Chemical Communications, 2021, 57, 528-531.	2.2	29
245	Flower-like hydroxyapatite modified carbon paste electrodes applicable for highly sensitive detection of heavy metal ions. Journal of Materials Chemistry, 2011, 21, 7552.	6.7	28
246	A high-rate capability LiFePO ₄ /C cathode achieved by the modulation of the band structures. Journal of Materials Chemistry A, 2021, 9, 24686-24694.	5.2	28
247	Nanoscale Pd supported on 3D porous carbon for enhanced selective oxidation of benzyl alcohol. RSC Advances, 2017, 7, 25885-25890.	1.7	27
248	Evaluating the influences of the sulfur content in precursors on the structure and sodium storage performances of carbon materials. Journal of Materials Chemistry A, 2018, 6, 11488-11495.	5.2	27
249	General Synthesis of Heteroatomâ€Doped Hierarchical Carbon toward Excellent Electrochemical Energy Storage. Batteries and Supercaps, 2019, 2, 712-722.	2.4	27
250	Defect Rich Hierarchical Porous Carbon for High Power Supercapacitors. Frontiers in Chemistry, 2020, 8, 43.	1.8	27
251	Advanced Carbon Materials for Sodiumâ€ion Capacitors. Batteries and Supercaps, 2021, 4, 538-553.	2.4	27
252	Acid induced fluorinated graphene oxide. RSC Advances, 2015, 5, 9337-9340.	1.7	26

#	Article	IF	CITATIONS
253	Electrochemically alternating voltage tuned Co2MnO4/Co hydroxide chloride for an asymmetric supercapacitor. Electrochimica Acta, 2015, 165, 198-205.	2.6	26
254	Nanorod-assembled NiCo ₂ O ₄ hollow microspheres assisted by an ionic liquid as advanced electrode materials for supercapacitors. RSC Advances, 2017, 7, 11123-11128.	1.7	26
255	Bi ₂ MoO ₆ Microsphere with Double-Polyaniline Layers toward Ultrastable Lithium Energy Storage by Reinforced Structure. Inorganic Chemistry, 2019, 58, 6410-6421.	1.9	26
256	Rodâ€Like Sb ₂ MoO ₆ : Structure Evolution and Sodium Storage for Sodiumâ€lon Batteries. Small Methods, 2019, 3, 1800533.	4.6	26
257	Engineering metal-sulfides with cations-tunable metal-oxides electrocatalysts with promoted catalytic conversion for robust ions-storage capability. Energy Storage Materials, 2022, 45, 1183-1200.	9.5	26
258	Extremely low loading of carbon quantum dots for high energy density in polyetherimide nanocomposites. Chemical Engineering Journal, 2022, 433, 133601.	6.6	26
259	Robust artificial interlayer for columnar sodium metal anode. Nano Energy, 2022, 97, 107203.	8.2	26
260	Manganeseâ€based layered oxide cathodes for sodium ion batteries. Nano Select, 2020, 1, 200-225.	1.9	25
261	Single-Crystalline Ni-Rich layered cathodes with Super-Stable cycling. Chemical Engineering Journal, 2022, 431, 133731.	6.6	25
262	Nanosizing Pd on 3D porous carbon frameworks as effective catalysts for selective phenylacetylene hydrogenation. RSC Advances, 2017, 7, 15309-15314.	1.7	24
263	Electrochemically Modulated LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ Cathodes for Lithiumâ€lon Batteries. Small Methods, 2019, 3, 1900065.	4.6	24
264	Conversion of egg-shell to hydroxyapatite for highly sensitive detection of endocrine disruptor bisphenol A. Journal of Materials Chemistry, 2011, 21, 14428.	6.7	23
265	Nanosizing low-loading Pd on phosphorus-doped carbon nanotubes for enhanced HCOOH oxidation performance. Electrochemistry Communications, 2016, 67, 26-30.	2.3	23
266	High-rate sodium ion anodes assisted by N-doped carbon sheets. Sustainable Energy and Fuels, 2017, 1, 1130-1136.	2.5	23
267	Mn‣ubstituted Tunnelâ€Type Polyantimonic Acid Confined in a Multidimensional Integrated Architecture Enabling Superfastâ€Charging Lithiumâ€ŀon Battery Anodes. Advanced Science, 2021, 8, 2002866.	5.6	23
268	Alternating voltage induced ordered anatase TiO2 nanopores: An electrochemical investigation of sodium storage. Journal of Power Sources, 2016, 336, 196-202.	4.0	22
269	Activated Flake Graphite Coated with Pyrolysis Carbon as Promising Anode for Lithium Storage. Electrochimica Acta, 2016, 196, 405-412.	2.6	22
270	Alternating Voltage Introduced [001]-Oriented α-MoO3 Microrods for High-Performance Sodium-ion Batteries. Electrochimica Acta, 2017, 245, 949-956.	2.6	22

#	Article	IF	CITATIONS
271	CuFeS2 as an anode material with an enhanced electrochemical performance for lithium-ion batteries fabricated from natural ore chalcopyrite. Journal of Solid State Electrochemistry, 2019, 23, 1991-2000.	1.2	22
272	Electrochemically intercalated intermediate induced exfoliation of few-layer MoS2 from molybdenite for long-life sodium storage. Science China Materials, 2021, 64, 115-127.	3.5	22
273	Porous Carbon Induced Anatase TiO2Nanodots/Carbon Composites for High-Performance Sodium-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A3117-A3125.	1.3	21
274	Interfacial assistant role of amine additives on zinc electrodeposition from deep eutectic solvents: an in situ X-ray imaging investigation. Electrochimica Acta, 2017, 240, 90-97.	2.6	21
275	3D Nanosheet-Assembled CoSe Quasi-Microspheres as Advanced Electrode Materials for Electrochemical Energy Storage. Journal of the Electrochemical Society, 2017, 164, A2341-A2347.	1.3	21
276	Progress in the Investigation and Application of Na ₃ V ₂ (PO ₄) ₃ for Electrochemical Energy Storage. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 103-129.	2.2	21
277	Extraction of rubidium from respirable sintering dust. Hydrometallurgy, 2018, 175, 144-149.	1.8	21
278	Dual-functional porous copper films modulated via dynamic hydrogen bubble template for in situ SERS monitoring electrocatalytic reaction. Applied Surface Science, 2019, 494, 731-739.	3.1	21
279	Fabrication of flower-like hydroxyapatite agglomerates with the assistant of bamboo membrane. Materials Letters, 2011, 65, 1982-1985.	1.3	20
280	Hollow carbon microbox from acetylacetone as anode material for sodium-ion batteries. Journal of Energy Chemistry, 2020, 51, 293-302.	7.1	20
281	Natural mineral compounds in energy-storage systems: Development, challenges, prospects. Energy Storage Materials, 2022, 45, 442-464.	9.5	20
282	Fast ion diffusion alloy layer facilitating 3D mesh substrate for dendrite-free zinc-ion hybrid capacitors. Journal of Energy Chemistry, 2022, 73, 565-574.	7.1	20
283	Electrochemical probing of carbon quantum dots: not suitable for a single electrode material. RSC Advances, 2015, 5, 107270-107275.	1.7	19
284	Size-Tunable Natural Mineral-Molybdenite for Lithium-Ion Batteries Toward: Enhanced Storage Capacity and Quicken Ions Transferring. Frontiers in Chemistry, 2018, 6, 389.	1.8	19
285	Controllable fabrication of two-dimensional layered transition metal oxides through electrochemical exfoliation of non-van der Waals metals for rechargeable zinc-ion batteries. Chemical Engineering Journal, 2021, 408, 127247.	6.6	19
286	Ironâ€Based Layered Cathodes for Sodiumâ€ion Batteries. Batteries and Supercaps, 2021, 4, 1657-1679.	2.4	19
287	Carbon dots for ultrastable solidâ€state batteries. SmartMat, 2022, 3, 286-297.	6.4	19
288	Suppressing the voltage failure by twinned heterostructure for high power sodium-ion capacitor. Chemical Engineering Journal, 2022, 446, 137070.	6.6	19

#	Article	IF	CITATIONS
289	Electrochemically triggered graphene sheets through cathodic exfoliation for lithium ion batteries anodes. RSC Advances, 2013, 3, 16130.	1.7	18
290	An Electrochemically Anodic Study of Anatase TiO2 Tuned through Carbon-Coating for High-performance Lithium-ion Battery. Electrochimica Acta, 2015, 164, 330-336.	2.6	18
291	Pd–P nanoalloys supported on a porous carbon frame as an efficient catalyst for benzyl alcohol oxidation. Catalysis Science and Technology, 2018, 8, 2333-2339.	2.1	18
292	TiO2 nanosheets anchoring on carbon nanotubes for fast sodium storage. Electrochimica Acta, 2018, 283, 1514-1524.	2.6	18
293	Li ₄ Ti ₅ O ₁₂ quantum dot decorated carbon frameworks from carbon dots for fast lithium ion storage. Materials Chemistry Frontiers, 2019, 3, 1761-1767.	3.2	18
294	Anchoring Interfacial Nickel Cations by Tunable Coordinative Structure for Highly Stabilized Nickel-Rich Layered Oxide Cathodes. Nano Energy, 2022, 93, 106803.	8.2	18
295	A 1.9-V all-organic battery-supercapacitor hybrid device with high rate capability and wide temperature tolerance in a metal-free water-in-salt electrolyte. Journal of Colloid and Interface Science, 2022, 612, 76-87.	5.0	18
296	A sustainable route from spent hydrogenation catalysts to lamellar spherical vanadium oxide hydrates for superior low-cost aqueous Zn-ion batteries. Energy Storage Materials, 2022, 50, 1-11.	9.5	18
297	Trace tea polyphenols enabling reversible dendrite-free zinc anode. Journal of Colloid and Interface Science, 2022, 624, 450-459.	5.0	18
298	K _{<i>x</i>} C _{<i>y</i>} phase induced expanded interlayer in ultraâ€thin carbon toward full potassiumâ€ion capacitors. , 2022, 4, 1151-1168.		18
299	An investigation of the electrochemically capacitive performances of mesoporous nickel cobaltite hollow spheres. Electrochimica Acta, 2015, 178, 153-162.	2.6	17
300	Alternating voltage induced porous Co ₃ O ₄ sheets: an exploration of its supercapacity properties. RSC Advances, 2015, 5, 177-183.	1.7	17
301	Influences of transition metal on structural and electrochemical properties of Li[NixCoyMnz]O2 (0.6≤â‰ 9 .8) cathode materials for lithium-ion batteries. Transactions of Nonferrous Metals Society of China, 2016, 26, 1396-1402.	1.7	17
302	Evaluating the Storage Behavior of Superior Low-Cost Anode Material from Biomass for High-Rate Sodium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A1431-A1437.	1.3	17
303	Nanoâ€confined Mo ₂ C Particles Embedded in a Porous Carbon Matrix: A Promising Anode for Ultraâ€stable Na Storage. ChemElectroChem, 2017, 4, 2669-2676.	1.7	17
304	Heterogeneous Interface Design for Enhanced Sodium Storage: Sb Quantum Dots Confined by Functional Carbon. Small Methods, 2021, 5, e2100188.	4.6	17
305	MnO ₂ Nanowires Anchored with Graphene Quantum Dots for Stable Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 10940-10947.	2.5	17
306	General overview of sodium, potassium, and zinc-ion capacitors. Journal of Alloys and Compounds, 2022, 913, 165216.	2.8	17

#	Article	IF	CITATIONS
307	Electrochemical Response of Cobalt(II) in the Presence of Ammonia. Electroanalysis, 2006, 18, 44-52.	1.5	16
308	The Direct Electrochemical Oxidation of Ammonia in Propylene Carbonate: A Generic Approach to Amperometric Gas Sensors. Electroanalysis, 2006, 18, 449-455.	1.5	16
309	Effective inhibition of zinc dendrites during electrodeposition using thiourea derivatives as additives. Journal of Materials Science, 2019, 54, 3536-3546.	1.7	16
310	Highly efficient re-cycle/generation of LiCoO2 cathode assisted by 2-naphthalenesulfonic acid. Journal of Hazardous Materials, 2021, 416, 126114.	6.5	16
311	Chirality Induces the Self-Assembly To Generate a 3D Porous Spiral-like Polyhedron as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 45596-45605.	4.0	15
312	Advanced Materials Prepared via Metallic Reduction Reactions for Electrochemical Energy Storage. Small Methods, 2020, 4, 2000613.	4.6	15
313	Carbon nanosheets from biomass waste: insights into the role of a controlled pore structure for energy storage. Sustainable Energy and Fuels, 2020, 4, 3552-3565.	2.5	15
314	Presodiation Strategies for the Promotion of Sodiumâ€Based Energy Storage Systems. Chemistry - A European Journal, 2021, 27, 16082-16092.	1.7	15
315	Ï€-type orbital hybridization and reactive oxygen quenching induced by Se-doping for Li-rich Mn-based oxide cathode. Energy Storage Materials, 2022, 51, 671-682.	9.5	15
316	Cathodic corrosion: an electrochemical approach to capture Zintl compounds for powder materials. Journal of Materials Chemistry A, 2015, 3, 5328-5336.	5.2	14
317	High-purity helical carbon nanotubes with enhanced electrochemical properties for supercapacitors. RSC Advances, 2017, 7, 7375-7381.	1.7	14
318	Nanosized palladium on phosphorus-incorporated porous carbon frameworks for enhanced selective phenylacetylene hydrogenation. Catalysis Science and Technology, 2017, 7, 4934-4939.	2.1	14
319	Evaluation of mechanical properties of multilayer graphyne-based structures as anode materials for lithium-ions batteries. European Physical Journal Plus, 2022, 137, .	1.2	14
320	Molecularly engineered organic copolymers as high capacity cathode materials for aqueous proton battery operating at sub-zero temperatures. Journal of Colloid and Interface Science, 2022, 619, 123-131.	5.0	14
321	Enabling Reversible Reaction by Uniform Distribution of Heterogeneous Intermediates on Defectâ€Rich SnSSe/C Layered Heterostructure for Ultralong ycling Sodium Storage. Small, 2022, 18, .	5.2	14
322	Constructing hierarchical sulfur-doped nitrogenous carbon nanosheets for sodium-ion storage. Nanotechnology, 2017, 28, 445604.	1.3	13
323	Electrochemically captured Zintl cluster-induced bismuthene for sodium-ion storage. Chemical Communications, 2021, 57, 2396-2399.	2.2	13
324	Channel regulation of TFC membrane with hydrophobic carbon dots in forward osmosis. Chinese Chemical Letters, 2021, 32, 2882-2886.	4.8	13

#	Article	IF	CITATIONS
325	Modified bornite materials with high electrochemical performance for sodium and lithium storage. Energy Storage Materials, 2021, 40, 150-158.	9.5	13
326	Doubling the cyclic stability of 3D hierarchically structured composites of 1T-MoS2/polyaniline/graphene through the formation of LiF-rich solid electrolyte interphase. Applied Surface Science, 2021, 565, 150582.	3.1	13
327	The Dynamic Interfacial Understanding of Zinc Electrodeposition in Ammoniacal Media through Synchrotron Radiation Techniques. Journal of the Electrochemical Society, 2017, 164, D230-D236.	1.3	12
328	Synergistic effect of cross-linked carbon nanosheet frameworks and Sb on the enhancement of sodium storage performances. New Journal of Chemistry, 2017, 41, 13724-13731.	1.4	12
329	A graphite-modified natural stibnite mineral as a high-performance anode material for sodium-ion storage. RSC Advances, 2019, 9, 28953-28960.	1.7	12
330	Monocrystal Cu 3 Mo 2 O 9 Confined in Polyaniline Protective Layer: an Effective Strategy for Promoting Lithium Storage Stability. ChemElectroChem, 2019, 6, 1688-1695.	1.7	12
331	A tailor-made deep eutectic solvent for 2.2ÂV wide temperature-tolerant supercapacitors via optimization of N,N-dimethylformamide/water co-solvents. Journal of Power Sources, 2022, 521, 230954.	4.0	12
332	Designing vapor silica-supported sulfur cathode for long-life lithium–sulfur battery. Chemical Engineering Journal, 2020, 382, 122843.	6.6	11
333	A P2@Tunnel Heterostructure Cathode for Highâ€Performance Sodiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 4383-4389.	1.7	11
334	Zintl chemistry: Current status and future perspectives. Chemical Engineering Journal, 2022, 433, 133841.	6.6	11
335	Mitigating the Jahn-Teller distortion driven by the spin-orbit coupling of lithium manganate cathode. Journal of Energy Chemistry, 2022, 72, 379-387.	7.1	11
336	Sodiumâ€lon Batteries: Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodiumâ€lon Batteries with Ultralong Cycle Life (Adv. Mater. 47/2015). Advanced Materials, 2015, 27, 7895-7895.	11.1	10
337	Influence of P doping on Na and K storage properties of N-rich carbon nanosheets. Materials Chemistry and Physics, 2019, 236, 121809.	2.0	10
338	Interfacial regulation of dendrite-free zinc anodes through a dynamic hydrophobic molecular membrane. Journal of Materials Chemistry A, 2021, 9, 14265-14269.	5.2	10
339	Editorial for special issue on advanced materials for energy storage and conversion. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1545-1548.	2.4	10
340	Bi-doped carbon dots for a stable lithium metal anode. Chemical Communications, 2022, 58, 6449-6452.	2.2	10
341	Carbon skeleton confined Sb chalcogenides nanodots for stable sodium storage. Carbon, 2022, 197, 341-349.	5.4	10
342	Multiwalled Carbon Nanotubes Resist Intercalation Whereas Pyrolytic Graphite Can Exfoliate in Propylene Carbonate: Electroanalysis Without the Deleterious Effects of Intercalation for the Detection of Ammonia. Electroanalysis, 2006, 18, 2141-2147.	1.5	9

#	Article	IF	CITATIONS
343	Determination of Ammonia Based on the Electrochemical Oxidation of N,N'-Diphenyl-1,4-phenylenediamine in Propylene Carbonate. Analytical Sciences, 2007, 23, 1317-1320.	0.8	9
344	Conversion of natural egg-shell to 3D flower-like hydroxyapatite agglomerates for highly sensitive detection of As3+ ions. Materials Letters, 2012, 78, 120-123.	1.3	9
345	Perovskite ABO ₃ â€Type MOFâ€Derived Carbon Decorated Fe ₃ O ₄ with Enhanced Lithium Storage Performance. ChemElectroChem, 2018, 5, 3426-3436.	1.7	9
346	Natural chalcopyrite as a sulfur source and its electrochemical performance for lithium–sulfur batteries. Inorganic Chemistry Frontiers, 2019, 6, 1217-1227.	3.0	9
347	Liquid Alloying Na–K for Sodium Metal Anodes. Journal of Physical Chemistry Letters, 2021, 12, 9321-9327.	2.1	9
348	Square Wave Voltammetric Determination of Trace Amounts of Europium(III) at Montmorillonite-Modified Carbon Paste Electrodes. Collection of Czechoslovak Chemical Communications, 2004, 69, 1590-1599.	1.0	8
349	Alternating voltage induced electrochemical synthesis of three-dimensionalization copper oxide for lithium-ion battery application. Chemical Physics Letters, 2016, 653, 30-34.	1.2	8
350	Insights into electrodeposition process of nickel from ammonium chloride media with speciation analysis and in situ synchrotron radiation X-ray imaging. Electrochimica Acta, 2016, 210, 812-820.	2.6	8
351	Natural marmatite with low discharge platform and excellent cyclicity as potential anode material for lithium-ion batteries. Electrochimica Acta, 2019, 321, 134676.	2.6	8
352	Unraveling the Mechanism of Chalcopyrite's Superior Performance for Lithium Storage. ACS Applied Energy Materials, 2021, 4, 5086-5093.	2.5	8
353	Tailoring MS <i>_x</i> Quantum Dots (M = Co, Ni, Cu, Zn) for Advanced Energy Storage Materials with Strong Interfacial Engineering. Small, 2022, 18, e2106593.	5.2	8
354	Effect of lithium content on electrochemical property of Li 1+x (Mn 0.6 Ni 0.2 Co 0.2) 1-x O 2 (0≤ â‰0.3) composite cathode materials for rechargeable lithium-ion batteries. Transactions of Nonferrous Metals Society of China, 2018, 28, 145-150.	1.7	7
355	Electronic Effect and Regiochemistry of Substitution in Pre-sodiation Chemistry. Journal of Physical Chemistry Letters, 2021, 12, 11968-11979.	2.1	7
356	Study of Nano-Ag Particles Doped TiO ₂ Prepared by Photocatalysis. Journal of Nanoscience and Nanotechnology, 2009, 9, 3904-3908.	0.9	6
357	Investigation of Photocatalytic Activity of Nano-Sized TiO ₂ with the Presence of Various Inorganic Anions. Journal of Nanoscience and Nanotechnology, 2009, 9, 3639-3643.	0.9	6
358	Graphene Encapsulated Silicon Carbide Nanocomposites for High and Low Power Energy Storage Applications. Journal of Carbon Research, 2017, 3, 20.	1.4	6
359	Zinc recovery from dilute ammoniacal media using an integrated solvent extraction and electrolysis process. Hydrometallurgy, 2020, 198, 105510.	1.8	6
360	Single particles electrochemistry for batteries. Journal of Electroanalytical Chemistry, 2020, 872, 113935.	1.9	6

Χιλο-Βο Ji

#	Article	IF	CITATIONS
361	Construction of 3D-ordered hydroxyapatite array structures on Ni foams by Nafion-assisted electrodeposition. Materials Letters, 2013, 107, 337-339.	1.3	5
362	Twinned copper nanoparticles modulated with electrochemical deposition for <i>in situ</i> SERS monitoring. CrystEngComm, 2018, 20, 5609-5618.	1.3	5
363	Discerning torquoselectivity in a series of cyclobutene <scp>ringâ€opening</scp> reactions using quantum theory of atoms in molecules and stress tensor. International Journal of Quantum Chemistry, 2022, 122, e26826.	1.0	5
364	Electrochemical Performance of Nitrogenâ€Doped Graphene/Silicene Composite as a Pseudocapacitive Anode for Lithiumâ€ion Battery. ChemistrySelect, 2022, 7, .	0.7	5
365	Uniform Lithium Deposition Induced by Double Lithiophobic Sandwich Structure for Stable Lithium Metal Anode. Advanced Materials Interfaces, 2022, 9, .	1.9	5
366	Synthesis and electrochemical characterization of F- and Cl-doped Li2FeSiO4 cathode material for lithium-ion battery. Journal of Materials Science: Materials in Electronics, 2022, 33, 2310-2321.	1.1	5
367	Carbon Dotsâ€Regulated Pomegranateâ€Like Metal Oxide Composites: From Growth Mechanism to Lithium Storage. Small Methods, 2022, 6, e2200245.	4.6	5
368	Synthesis of flexible LiMn0.8Fe0.2PO4/C microsphere and its synergetic effects with blended LiNi0.85Co0.10Al0.05O2 electrodes. Journal of Power Sources, 2022, 541, 231671.	4.0	5
369	Advances in the structure and composition design of zinc anodes for high performance zinc ion batteries. Sustainable Energy and Fuels, 0, , .	2.5	5
370	Doping carbon networks with phosphorus for supporting Pd in catalyzing selective oxidation of benzyl alcohol. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	4
371	Titelbild: The Threeâ€Dimensional Dendriteâ€Free Zinc Anode on a Copper Mesh with a Zincâ€Oriented Polyacrylamide Electrolyte Additive (Angew. Chem. 44/2019). Angewandte Chemie, 2019, 131, 15701-15701.	1.6	4
372	The Contribution of Heteroatoms in Amide Derivatives with an Identical Structure on Nickel Electrodeposits. Journal of the Electrochemical Society, 2019, 166, D381-D388.	1.3	4
373	Phase-Controllable Cobalt Phosphides Induced through Hydrogel for Higher Lithium Storages. Inorganic Chemistry, 2020, 59, 6471-6480.	1.9	4
374	Molecularly Compensated Preâ€Metallation Strategy for Metalâ€Ion Batteries and Capacitors. Angewandte Chemie, 2021, 133, 17207-17216.	1.6	4
375	Tailoring Oxygen Site Defects of Vanadium-Based Materials through Bromine Anion Doping for Advanced Energy Storage. ACS Applied Energy Materials, 2021, 4, 10783-10798.	2.5	4
376	New insights of QTAIM and stress tensor to finding non-competitive/competitive torquoselectivity of cyclobutene. Journal of Chemical Physics, 2021, 155, 204305.	1.2	4
377	Electrochemical Zintl Cluster Bi22â~' induced chemically bonded bismuth / graphene oxide composite for sodium-ion batteries. Electrochimica Acta, 2022, 413, 140174.	2.6	4
378	Selective recovery of Cu(II) through polymer inclusion membranes mediated with 2-aminomethylpyridine derivatives. Transactions of Nonferrous Metals Society of China, 2021, 31, 3591-3601.	1.7	4

#	Article	IF	CITATIONS
379	An oxygen pumping anode for electrowinning aluminium. Physical Chemistry Chemical Physics, 2013, 15, 6350.	1.3	3
380	Energy Storage: Largeâ€Area Carbon Nanosheets Doped with Phosphorus: A Highâ€Performance Anode Material for Sodiumâ€Ion Batteries (Adv. Sci. 1/2017). Advanced Science, 2017, 4, .	5.6	3
381	Sodium de-insertion processes in single Na TMO2 particles studied by an electrochemical collision method: O3 phases versus P2 phases. Electrochemistry Communications, 2021, 125, 107000.	2.3	3
382	Single LiNi0.8Mn0.1Co0.1O2 particle electrochemistry of collision. Journal of Power Sources, 2021, 506, 230228.	4.0	3
383	Coupling regeneration strategy of lithium-ion electrode materials turned with naphthalenedisulfonic acid. Waste Management, 2021, 136, 1-10.	3.7	3
384	Electrochemically Engineering Antimony Interspersed on Graphene toward Advanced Sodium-Storage Anodes. Inorganic Chemistry, 2021, 60, 12526-12535.	1.9	2
385	Nanomaterials for electrochemical energy storage. Frontiers of Nanoscience, 2021, 18, 421-484.	0.3	2
386	Lithiumâ€Ion Batteries: Mnâ€Substituted Tunnelâ€Type Polyantimonic Acid Confined in a Multidimensional Integrated Architecture Enabling Superfastâ€Charging Lithiumâ€Ion Battery Anodes (Adv. Sci. 3/2021). Advanced Science, 2021, 8, 2170014.	5.6	1
387	Nextâ€Generation Additive Manufacturing: Tailorable Graphene/Polylactic(acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithiumâ€ion Batteries. Batteries and Supercaps, 2019, 2, 399-400.	2.4	0