Katarzyna BÅ, och

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4983570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potential of Rapid Tooling in Rapid Heat Cycle Molding: A Review. Materials, 2022, 15, 3725.	2.9	14
2	The Effects of Various Concentrations of NaOH on the Inter-Particle Gelation of a Fly Ash Geopolymer Aggregate. Materials, 2021, 14, 1111.	2.9	31
3	Role of Sintering Temperature in Production of Nepheline Ceramics-Based Geopolymer with Addition of Ultra-High Molecular Weight Polyethylene. Materials, 2021, 14, 1077.	2.9	7
4	Effect of Aluminium Powder on Kaolin-Based Geopolymer Characteristic and Removal of Cu2+. Materials, 2021, 14, 814.	2.9	19
5	Hybrid Mold: Comparative Study of Rapid and Hard Tooling for Injection Molding Application Using Metal Epoxy Composite (MEC). Materials, 2021, 14, 665.	2.9	8
6	Properties of a New Insulation Material Glass Bubble in Geopolymer Concrete. Materials, 2021, 14, 809.	2.9	23
7	Comparison of Hook and Straight Steel Fibers Addition on Malaysian Fly Ash-Based Geopolymer Concrete on the Slump, Density, Water Absorption and Mechanical Properties. Materials, 2021, 14, 1310.	2.9	24
8	Optimisation of Shrinkage and Strength on Thick Plate Part Using Recycled LDPE Materials. Materials, 2021, 14, 1795.	2.9	8
9	Characterisation at the Bonding Zone between Fly Ash Based Geopolymer Repair Materials (GRM) and Ordinary Portland Cement Concrete (OPCC). Materials, 2021, 14, 56.	2.9	26
10	Relationship between the shape of X-ray diffraction patterns and magnetic properties of bulk amorphous alloys Fe65Nb5Y5+xHf5-xB20 (where: xÀ= 0, 1,2, 3, 4, 5). Journal of Alloys and Compounds, 2020, 820, 153420.	5.5	4
11	The Influence of the Silicon Content on the Formation of Fe23B6 Metastable Phases in Fe65Co11â^xxB20SixZr2Hf2 Bulk Amorphous Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 4602-4609.	2.2	1
12	The Magnetisation Process of Bulk Amorphous Alloys: Fe36+xCo36â^'xY8B20, Where: x = 0, 3, 7, or 12. Materials, 2020, 13, 846.	2.9	6
13	The effect of the cobalt-content on the magnetic properties of iron-based amorphous alloys. Journal of Magnetism and Magnetic Materials, 2019, 477, 214-219.	2.3	12
14	Magnetic Properties of Rapid Cooled FeCoB Based Alloys Produced by Injection Molding. IOP Conference Series: Materials Science and Engineering, 2018, 374, 012021.	0.6	0
15	Structural relaxations in the bulk amorphous alloy Fe 61 Co 10 Ti 3 Y 6 B 20. Physica B: Condensed Matter, 2017, 512, 81-84.	2.7	6
16	Microstructure and Soft Magnetic Properties of Fe-Zr-(Pt)-Nb-Cu-B Amorphous Alloys. Archives of Metallurgy and Materials, 2017, 62, 707-710.	0.6	1
17	The Structure and Properties of Rapid Cooled Iron Based Alloy. IOP Conference Series: Materials Science and Engineering, 2017, 209, 012023.	0.6	0
18	Structural Relaxation in the Amorphous Alloys: FeMeMoCrNbB (where Me = Ni or Co). Acta Physica Polonica A, 2017, 131, 720-722.	0.5	0

#	Article	IF	CITATIONS
19	The Influence of Heat Treatment on the Magnetization Process (within Strong Magnetic Fields) for the Alloy: Fe61Co10Y8Cu1B20. Archives of Metallurgy and Materials, 2016, 61, 499-502.	0.6	0

Analysis of the Thermal and Magnetic Properties of Amorphous Fe61Co10Zr2.5Hf2.5Me2W2B20 (Where) Tj ETQq0.0 or gBT₅/Overlock =

21	Curie Temperature and Microstructural Changes Due to the Heating Treatment of Magnetic Amorphous Materials. Archives of Metallurgy and Materials, 2016, 61, 451-456.	0.6	3
22	Structure and Magnetic Properties of Amorphous Fe ₆₀ Co ₁₀ Mo ₂ W _x Y ₈ B _{20-x} (x=0, 1) Alloys. Acta Physica Polonica A, 2016, 130, 905-908.	0.5	1
23	Structure and Magnetic Properties of Amorphous Fe ₈₂ Zr ₇ Nb ₂ Cu ₁ B ₈ and Crystalline Fe ₈₂ Zr ₆ Y ₁ Nb ₂ Cu ₁ 8 ₈ 888 Acta Physica Polonica A. 2016. 130. 909-912.	0.5	2
24	Magnetic properties and microstructure of a bulk amorphous Fe61Co10Ti3Y6B20 alloy, fabricated as rods and tubes. Materiali in Tehnologije, 2016, 50, 189-193.	0.5	1
25	Influence of structural defects on the magnetic properties of massive amorphous Fe60Co10Mo2WxY8B20-x (x = 1, 2) alloys produced with the injection casting method. Materiali in Tehnologije, 2016, 50, 559-564.	0.5	1
26	Structure and Soft Magnetic Properties of the Amorphous Alloys: Fe61Co10Ti3-xY6+xB20 (x = 0, 1). Archives of Metallurgy and Materials, 2016, 61, 445-450.	0.6	0
27	Microstructure And Magnetic Properties Of The FeZr(Y)NbCuB Amorphous Alloys. Archives of Metallurgy and Materials, 2015, 60, 1071-1074.	0.6	2
28	Crystallization of Fe-Based Bulk Amorphous Alloys. Archives of Metallurgy and Materials, 2015, 60, 7-10.	0.6	1
29	Effect of heat treatment on the shape of the hyperfine field induction distributions and magnetic properties of amorphous soft magnetic Fe ₆₂ Co ₁₀ Y ₈ 20 alloy. Nukleonika, 2015, 60, 23-27.	0.8	10
30	Influence of the production method of Fe61Co10Y8W1B20 amorphous alloy on the resulting microstructure and hyperfine field distribution. Journal of Alloys and Compounds, 2015, 628, 424-428.	5.5	14
31	Analysis of the structure (XRD) and microstructure (TEM, SEM, AFM) of bulk amorphous and nanocrystalline alloys based on FeCoB. International Journal of Materials Research, 2015, 106, 689-696.	0.3	5
32	Influence of 1% Addition of Nb and W on the Relaxation Process in Classical Fe-Based Amorphous Alloys. Acta Physica Polonica A, 2015, 127, 397-399.	0.5	7
33	The Influence of Heat Treatment on Irreversible Structural Relaxation in Bulk Amorphous Fe ₆₁ Co ₁₀ Ti ₃ Y ₆ B ₂₀ Alloy. Acta Physica Polonica A, 2015, 127, 442-444.	0.5	7
34	Approach to Ferromagnetic Saturation for the Bulk Amorphous Alloy: (Fe _{0.61} Co _{0.10} Zr _{0.025} Hf _{0.025} Ti _{0.02} W _{ Acta Physica Polonica A, 2015, 127, 413-414.}	•0.02.5/sut	›>Bǥsub>0.
35	Magnetocaloric Effect in Amorphous and Partially Crystallized Fe-Zr-Nb-Cu-B Alloy. Acta Physica Polonica A, 2015, 127, 606-607.	0.5	1
	Magnetic properties of the suction-cast bulk amorphous alloy:		

36 (Fe0.61Co0.10Zr0.025Hf0.025Ti0.02W0.02B0.20)96Y4. Journal of Magnetism and Magnetic Materials, 2015, 2.3 16
390, 118-122.

Katarzyna BÅ,och

#	Article	IF	CITATIONS
37	An investigation into the effect of isothermal annealing on the structure (XRD), microstructure (SEM, TEM) and magnetic properties of amorphous ribbons and bulk amorphous plates. International Journal of Materials Research, 2015, 106, 682-688.	0.3	6
38	Structural Defects In The FeCoYB Amorphous Alloys. Archives of Metallurgy and Materials, 2015, 60, 2019-2024.	0.6	2
39	Microstructure, magnetic and mechanical properties of the bulk amorphous alloy Fe61Co10Ti4Y5B20. Materiali in Tehnologije, 2015, 49, 553-556.	0.5	2
40	Influence Of Cooling Rate On Phase Composition And Magnetic Properties Of Sm12.5Co66.5Fe8Cu11Si2 Alloy In The Form Of Ribbon In As-Quenched State. Archives of Metallurgy and Materials, 2015, 60, 667-670.	0.6	0
41	Modeling the Hysteresis Loop in Hard Magnetic Materials Using T(x) Model. Acta Physica Polonica A, 2014, 126, 170-171.	0.5	5
42	Magnetic Relaxations in Amorphous Fe_{61}Co_{10}Y_{8}Zr_{1}B_{20} Alloy. Acta Physica Polonica A, 2014, 126, 106-107.	0.5	2
43	The Study of Magnetization in Strong Magnetic Fields for Alloys Fe60Co10WxNb2Y8B20-x(x=0, 1). Acta Physica Polonica A, 2014, 126, 957-959.	0.5	3
44	Time and Thermal Stability of Magnetic Properties in Fe_{61}Co_{10}Y_{8}Nb_{1}B_{20} Bulk Amorphous Alloys. Acta Physica Polonica A, 2014, 126, 108-109.	0.5	6
45	Effect of manufacturing method on the magnetic properties and formation of structural defects in Fe61Co10Y8Zr1B20 amorphous alloy. Journal of Alloys and Compounds, 2014, 615, S51-S55.	5.5	12
46	Influence of production method on the magnetic parameters and structure of Fe61Co10Y8Nb1B20 amorphous alloys in the as-quenched state. Journal of Alloys and Compounds, 2014, 615, S67-S70.	5.5	11
47	Microstructure and some thermomagnetic properties of amorphous and partially crystallized Fe–(Pt)–Zr–Nb–Cu–B alloys. Physica B: Condensed Matter, 2014, 445, 37-41.	2.7	8
48	The Structural Stability of the Fe36Co36Si19B5Nb4 Bulk Amorphous Alloy. Archives of Metallurgy and Materials, 2014, 59, 259-262.	0.6	1
49	The Structural Relaxation and its Influence on High Field Magnetization Processes. Archives of Metallurgy and Materials, 2014, 59, 659-662.	0.6	3
50	Influence of Annealing on the Microstructure and Magnetic Properties in Amorphous Alloys. Archives of Metallurgy and Materials, 2014, 59, 663-666.	0.6	2
51	Invar behavior of NANOPERM-type amorphous Fe–(Pt)–Zr–Nb–Cu–B alloys. Journal of Magnetism and Magnetic Materials, 2013, 341, 100-107.	2.3	15
52	Microstructure and some magnetic properties of bulk amorphous (Fe0.61Co0.10Zr0.025Hf0.025Ti0.02W0.02B0.20)100â^'xYx (x=0, 2, 3 or 4) alloys. Journal of Magnetism and Magnetic Materials, 2012, 324, 540-549.	2.3	21
53	Magnetization behavior and magnetocaloric effect in bulk amorphous Fe60Co5Zr8Mo5W2B20 alloy. Journal of Magnetism and Magnetic Materials, 2012, 324, 1360-1364.	2.3	12
54	Microstructure and magnetic properties of Fe-Co-Nd-Y-B alloys obtained by suction casting method. Journal of Rare Earths, 2009, 27, 680-683.	4.8	9

#	Article	IF	CITATIONS
55	Microstructure and magnetic properties of bulk amorphous and nanocrystalline Fe61Co10Zr2.5Hf2.5Nb2W2B20 alloy. Journal of Magnetism and Magnetic Materials, 2008, 320, e787-e791.	2.3	6
56	Some Magnetic Properties of Bulk Amorphous Fe–Co–Zr–Hf–Ti–W–B–(Y) Alloys. IEEE Transaction: Magnetics, 2008, 44, 3879-3882.	s on 2.1	16
57	Thermal Stability and Crystallization οf Iron and Cobalt - Based Bulk Amorphous Alloys. Acta Physica Polonica A, 2008, 114, 1659-1666.	0.5	11
58	Microstructure and low field magnetic properties of bulk Fe61Co10Hf2.5Zr2.5Ti2W2B20amorphous and partially crystallized alloy. Journal of Physics: Conference Series, 2007, 79, 012029.	0.4	0
59	Microstructure and low field magnetic properties of bulk Fe ₆₁ Co ₁₀ Hf _{2.5} Zr _{2.5} Ti ₂ W ₂ B <sub and partially crystallized alloy. Journal of Physics: Conference Series, 2007, 79, 012024.</sub 	> 20 x/sub:	>amorphous