Paolo Ferruti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4983217/publications.pdf

Version: 2024-02-01

261 papers

6,751 citations

43 h-index 110368 64 g-index

277 all docs

277 docs citations

times ranked

277

4790 citing authors

#	Article	IF	CITATIONS
1	Evaluation of the eco-compatibility of polyamidoamines by means of seed germination test. Polymer Degradation and Stability, 2022, 197, 109854.	5.8	3
2	Nanosized T1 MRI Contrast Agent Based on a Polyamidoamine as Multidentate Gd Ligand. Molecules, 2022, 27, 174.	3.8	3
3	Semi-Crystalline Hydrophobic Polyamidoamines: A New Family of Technological Materials?. Polymers, 2021, 13, 1018.	4. 5	3
4	Polyamidoamines Derived from Natural \hat{l}_{\pm} -Amino Acids as Effective Flame Retardants for Cotton. Polymers, 2021, 13, 3714.	4.5	13
5	The Thermo-Oxidative Behavior of Cotton Coated with an Intumescent Flame Retardant Glycine-Derived Polyamidoamine: A Multi-Technique Study. Polymers, 2021, 13, 4382.	4.5	11
6	Light-Triggered Trafficking to the Cell Nucleus of a Cationic Polyamidoamine Functionalized with Ruthenium Complexes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 34576-34587.	8.0	6
7	Extra-Small Gold Nanospheres Decorated With a Thiol Functionalized Biodegradable and Biocompatible Linear Polyamidoamine as Nanovectors of Anticancer Molecules. Frontiers in Bioengineering and Biotechnology, 2020, 8, 132.	4.1	19
8	Highlight on the Mechanism of Linear Polyamidoamine Degradation in Water. Polymers, 2020, 12, 1376.	4.5	7
9	Hydrogen Bonding in a l-Glutamine-Based Polyamidoamino Acid and its pH-Dependent Self-Ordered Coil Conformation. Polymers, 2020, 12, 881.	4.5	5
10	pH-Dependent Chiral Recognition of D- and L-Arginine Derived Polyamidoamino Acids by Self-Assembled Sodium Deoxycholate. Polymers, 2020, 12, 900.	4.5	3
11	Controlled Synthesis of Linear Polyamidoamino Acids. Polymers, 2019, 11, 1324.	4.5	5
12	Mucin Thin Layers: A Model for Mucus-Covered Tissues. International Journal of Molecular Sciences, 2019, 20, 3712.	4.1	10
13	Tuning Polyamidoamine Design To Increase Uptake and Efficacy of Ruthenium Complexes for Photodynamic Therapy. Inorganic Chemistry, 2019, 58, 14586-14599.	4.0	15
14	Superior flame retardancy of cotton by synergetic effect of cellulose-derived nano-graphene oxide carbon dots and disulphide-containing polyamidoamines. Polymer Degradation and Stability, 2019, 169, 108993.	5.8	27
15	d-, l- and d,l-Tryptophan-Based Polyamidoamino Acids: pH-Dependent Structuring and Fluorescent Properties. Polymers, 2019, 11, 543.	4.5	12
16	Sulfur-Based Copolymeric Polyamidoamines as Efficient Flame-Retardants for Cotton. Polymers, 2019, 11, 1904.	4.5	11
17	A new catechol-functionalized polyamidoamine as an effective SPION stabilizer. Colloids and Surfaces B: Biointerfaces, 2019, 174, 260-269.	5.0	9
18	Linear polyamidoamines as novel biocompatible phosphorus-free surface-confined intumescent flame retardants for cotton fabrics. Polymer Degradation and Stability, 2018, 151, 52-64.	5.8	51

#	Article	IF	CITATIONS
19	Comparison of Gene Transfection and Cytotoxicity Mechanisms of Linear Poly(amidoamine) and Branched Poly(ethyleneimine) Polyplexes. Pharmaceutical Research, 2018, 35, 86.	3.5	11
20	Enhanced photoinduced antibacterial activity of a BODIPY photosensitizer in the presence of polyamidoamines. Lasers in Medical Science, 2018, 33, 1401-1407.	2.1	16
21	Self-Structuring in Water of Polyamidoamino Acids with Hydrophobic Side Chains Deriving from Natural α-Amino Acids. Polymers, 2018, 10, 1261.	4.5	10
22	Polyamidoamine Nanoparticles for the Oral Administration of Antimalarial Drugs. Pharmaceutics, 2018, 10, 225.	4.5	17
23	Disulfide-containing polyamidoamines with remarkable flame retardant activity for cotton fabrics. Polymer Degradation and Stability, 2018, 156, 1-13.	5.8	43
24	RGD-mimic polyamidoamine-montmorillonite composites with tunable stiffness as scaffolds for bone tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2164-2175.	2.7	27
25	Self-Ordering Secondary Structure of <scp>d</scp> - and <scp>l</scp> -Arginine-Derived Polyamidoamino Acids. ACS Macro Letters, 2017, 6, 987-991.	4.8	15
26	The AGMA1 polyamidoamine mediates the efficient delivery of siRNA. Journal of Drug Targeting, 2017, 25, 891-898.	4.4	14
27	Cyclodextrin-Based Nanohydrogels Containing Polyamidoamine Units: A New Dexamethasone Delivery System for Inflammatory Diseases. Gels, 2017, 3, 22.	4.5	14
28	Polyâ€∢scp>l‣actic Acid Nanofiber–Polyamidoamine Hydrogel Composites: Preparation, Properties, and Preliminary Evaluation as Scaffolds for Human Pluripotent Stem Cell Culturing. Macromolecular Bioscience, 2016, 16, 1533-1544.	4.1	31
29	One-step synthesis of poly(lactic- <i>co</i> glycolic acid)- <i>g</i> -poly-1-vinylpyrrolidin-2-one copolymers. Journal of Polymer Science Part A, 2016, 54, 1919-1928.	2.3	2
30	Linear biocompatible glyco-polyamidoamines as dual action mode virus infection inhibitors with potential as broad-spectrum microbicides for sexually transmitted diseases. Scientific Reports, 2016, 6, 33393.	3.3	10
31	The AGMA1 poly(amidoamine) inhibits the infectivity of herpes simplex virus in cell lines, in human cervicovaginal histocultures, and in vaginally infected mice. Biomaterials, 2016, 85, 40-53.	11.4	30
32	A Luminescent Poly(amidoamine)–Iridium Complex as a New Singlet-Oxygen Sensitizer for Photodynamic Therapy. Inorganic Chemistry, 2015, 54, 544-553.	4.0	75
33	Improved Anti-Tumoral Therapeutic Efficacy of 4-Hydroxynonenal Incorporated in Novel Lipid Nanocapsules in 2D and 3D Models. Journal of Biomedical Nanotechnology, 2015, 11, 2169-2185.	1.1	8
34	The Agmatine-Containing Poly(Amidoamine) Polymer AGMA1 Binds Cell Surface Heparan Sulfates and Prevents Attachment of Mucosal Human Papillomaviruses. Antimicrobial Agents and Chemotherapy, 2015, 59, 5250-5259.	3.2	20
35	A soluble biocompatible guanidine-containing polyamidoamine as promoter of primary brain cell adhesion and i>in vitro / i> cell culturing. Science and Technology of Advanced Materials, 2014, 15, 045007.	6.1	14
36	Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium. Journal of Controlled Release, 2014, 177, 84-95.	9.9	66

#	Article	IF	CITATIONS
37	Agmatine-Containing Poly(amidoamine)s as a Novel Class of Antiviral Macromolecules: Structural Properties and <i>In Vitro</i> Evaluation of Infectivity Inhibition. Antimicrobial Agents and Chemotherapy, 2014, 58, 6315-6319.	3.2	23
38	Amphoteric, Prevailingly Cationic <scp>L</scp> â€ <scp>A</scp> rginine Polymers of Poly(amidoamino) Tj ETQq0 0 Cellâ€ <scp>P</scp> ermeating Characterizations. Macromolecular Bioscience, 2014, 14, 390-400.	0 rgBT / 4.1	Overlock 10 ⁻ 36
39	Superparamagnetic iron oxide nanoparticles stabilized by a poly(amidoamine)-rhenium complex as potential theranostic probe. Dalton Transactions, 2014, 43, 1172-1183.	3.3	18
40	The inclusion complex of 4-hydroxynonenal with a polymeric derivative of β-cyclodextrin enhances the antitumoral efficacy of the aldehyde in several tumor cell lines and in a three-dimensional human melanoma model. Free Radical Biology and Medicine, 2013, 65, 765-777.	2.9	14
41	Degradable Poly(amidoamine) Hydrogels as Scaffolds for In Vitro Culturing of Peripheral Nervous System Cells. Macromolecular Bioscience, 2013, 13, 332-347.	4.1	25
42	Fast and quantitative manganese sorption by polyamidoamine resins. Journal of Polymer Science Part A, 2013, 51, 769-773.	2.3	4
43	Poly(amidoamine)s: Past, present, and perspectives. Journal of Polymer Science Part A, 2013, 51, 2319-2353.	2.3	88
44	A Small Molecule Glycosaminoglycan Mimetic Blocks Plasmodium Invasion of the Mosquito Midgut. PLoS Pathogens, 2013, 9, e1003757.	4.7	25
45	Selfâ€Assembled PAAâ€Based Nanoparticles as Potential Gene and Protein Delivery Systems. Macromolecular Bioscience, 2013, 13, 641-649.	4.1	12
46	Luminescent Rhenium and Ruthenium Complexes of an Amphoteric Poly(amidoamine) Functionalized with 1,10-Phenanthroline. Inorganic Chemistry, 2012, 51, 12776-12788.	4.0	35
47	Effects of branched or linear architecture of bioreducible poly(amido amine)s on their in vitro gene delivery properties. Journal of Controlled Release, 2012, 164, 372-379.	9.9	61
48	Heteroâ€difunctional dimers as building blocks for the synthesis of poly(amidoamine)s with heteroâ€difunctional chain terminals and their derivatives. Journal of Polymer Science Part A, 2012, 50, 4947-4957.	2.3	13
49	L -lysine and EDTA polymer mimics as resins for the quantitative and reversible removal of heavy metal ion water pollutants. Journal of Polymer Science Part A, 2012, 50, 5000-5010.	2.3	9
50	Enhanced Antiviral Activity of Acyclovir Loaded into Nanoparticles. Methods in Enzymology, 2012, 509, 1-19.	1.0	28
51	Evidence for the applicability of a novel procedure (swelling–poling–deswelling) to produce a stable alignment of second order NLO-chromophores covalently attached to a cross-linked PMMA or polystyrene polymeric network. Journal of Non-Crystalline Solids, 2011, 357, 2075-2080.	3.1	18
52	Poly(amidoamine) polymers: soluble linear amphiphilic drug-delivery systems for genes, proteins and oligonucleotides. Therapeutic Delivery, 2011, 2, 907-917.	2.2	37
53	Poly(amidoamine) Hydrogels as Scaffolds for Cell Culturing and Conduits for Peripheral Nerve Regeneration. International Journal of Polymer Science, 2011, 2011, 1-20.	2.7	4
54	Biological performance of a novel biodegradable polyamidoamine hydrogel as guide for peripheral nerve regeneration. Journal of Biomedical Materials Research - Part A, 2011, 98A, 19-30.	4.0	47

#	Article	IF	CITATIONS
55	Poly(amidoamine)-Cholesterol Conjugate Nanoparticles Obtained by Electrospraying as Novel Tamoxifen Delivery System. Journal of Drug Delivery, 2011, 2011, 1-9.	2.5	25
56	In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of \hat{l}^2 -cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 68, 183-191.	1.6	61
57	Intracellular fate of bioresponsive poly(amidoamine)s in vitro and in vivo. Journal of Controlled Release, 2010, 142, 78-88.	9.9	51
58	Direct Microfabrication of Topographical and Chemical Cues for the Guided Growth of Neural Cell Networks on Polyamidoamine Hydrogels. Macromolecular Bioscience, 2010, 10, 842-852.	4.1	43
59	Interaction of an Endosomolytic Polyamidoamine ISA23 with Vesicles Mimicking Intracellular Membranes: A SANS/EPR Study. Macromolecular Bioscience, 2010, 10, 963-973.	4.1	6
60	Synthesis of polymers containing regularly distributed tetrathiaâ€[7]â€elicene units along the backbone. Journal of Polymer Science Part A, 2010, 48, 4704-4710.	2.3	6
61	Amphoteric Agmatine Containing Polyamidoamines as Carriers for Plasmid DNA In Vitro and In Vivo Delivery. Biomacromolecules, 2010, 11, 2667-2674.	5.4	45
62	Enhanced antiviral activity of Acyclovir loaded into \hat{l}^2 -cyclodextrin-poly(4-acryloylmorpholine) conjugate nanoparticles. Journal of Controlled Release, 2009, 137, 116-122.	9.9	78
63	Poly(amidoamine) Conjugates Containing Doxorubicin Bound via an Acidâ€5ensitive Linker. Macromolecular Bioscience, 2009, 9, 480-487.	4.1	60
64	Acidâ€base properties of poly(amidoamine)s. Journal of Polymer Science Part A, 2009, 47, 6977-6991.	2.3	37
65	Tricarbonylâ^'Rhenium Complexes of a Thiol-Functionalized Amphoteric Poly(amidoamine). Biomacromolecules, 2009, 10, 3273-3282.	5.4	25
66	A Biodegradable Polymeric Carrier Based on PEG for Drug Delivery. Journal of Bioactive and Compatible Polymers, 2009, 24, 220-234.	2.1	31
67	Sterically stabilized self-assembling reversibly cross-linked polyelectrolyte complexes with nucleic acids for environmental and medical applications. Biochemical Society Transactions, 2009, 37, 713-716.	3.4	11
68	Biomimetic poly(amidoamine) hydrogels as synthetic materials for cell culture. Journal of Nanobiotechnology, 2008, 6, 14.	9.1	27
69	Poly(4â€acryloylmorpholine) oligomers carrying a βâ€cyclodextrin residue at one terminus. Journal of Polymer Science Part A, 2008, 46, 1607-1617.	2.3	29
70	Functionalization and molecular dynamics study of carboxyâ€terminated poly(1â€vinylpyrrolidinâ€2â€one): A potential soluble carrier of biomolecules. Journal of Polymer Science Part A, 2008, 46, 1683-1698.	2.3	7
71	A three steps procedure (swelling–poling–deswelling) to produce a stable alignment of second order NLO-phores covalently attached to a cross-linked polymeric network. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 147, 293-297.	3.5	9
72	Preparation and in vitro evaluation of the antiviral activity of the Acyclovir complex of a \hat{l}^2 -cyclodextrin/poly(amidoamine) copolymer. Journal of Controlled Release, 2008, 126, 17-25.	9.9	42

#	Article	IF	Citations
73	Poly(amidoamine)s carrying TEMPO residues for NMR imaging applications. New Journal of Chemistry, 2008, 32, 323-332.	2.8	20
74	Quantitative Investigation by Atomic Force Microscopy of Supported Phospholipid Layers and Nanostructures on Cholesterol-Functionalized Glass Surfaces. Langmuir, 2008, 24, 7830-7841.	3. 5	7
75	Poly(amidoamine) Conjugates with Disulfide-Linked Cholesterol Pendants Self-Assembling into Redox-Sensitive Nanoparticles. Biomacromolecules, 2008, 9, 2693-2704.	5.4	40
76	Novel Poly(amidoamine)â€Based Hydrogels as Scaffolds for Tissue Engineering. Macromolecular Symposia, 2008, 266, 41-47.	0.7	13
77	Polymerization Kinetics of Poly(amidoamine)s in Different Solvents. Journal of Bioactive and Compatible Polymers, 2007, 22, 219-231.	2.1	17
78	Novel Amphoteric Cystine-Based Poly(amidoamine)s Responsive to Redox Stimuli. Macromolecules, 2007, 40, 4785-4793.	4.8	30
79	Prevailingly Cationic Agmatine-Based Amphoteric Polyamidoamine as a Nontoxic, Nonhemolytic, and "Stealthlike―DNA Complexing Agent and Transfection Promoter. Biomacromolecules, 2007, 8, 1498-1504.	5.4	44
80	Poly(amidoamine)s with 2-Dithiopyridine Side Substituents as Intermediates to Peptide–Polymer Conjugates. Macromolecular Rapid Communications, 2007, 28, 1243-1250.	3.9	13
81	Structural characterisation of poly(amidoamine) networks via high-resolution magic angle spinning NMR. Magnetic Resonance in Chemistry, 2007, 45, 51-58.	1.9	18
82	Ferrocene derivatives supported on poly(N-vinylpyrrolidin-2-one) (PVP): Synthesis of new water-soluble electrochemically active probes for biomolecules. Journal of Organometallic Chemistry, 2007, 692, 1363-1371.	1.8	11
83	Synthesis, Physicochemical Properties, and Preliminary Biological Characterizations of a Novel Amphoteric Agmatine-Based Poly(amidoamine) with RGD-Like Repeating Units. Biomacromolecules, 2006, 7, 1215-1222.	5. 4	60
84	Novel polyamidoamine-based hydrogel with an innovative molecular architecture as a Co2+-, Ni2+-, and Cu2+-sorbing material: Cyclovoltammetry and extended X-ray absorption fine structure studies. Journal of Polymer Science Part A, 2006, 44, 2316-2327.	2.3	23
85	NMR Spectroscopy and MALDI-TOF MS Characterisation of End-Functionalised PVP Oligomers Prepared with Different Esters as Chain Transfer Agents. Macromolecular Bioscience, 2006, 6, 216-227.	4.1	17
86	New Stimuli Responsive Poly(1-vinylpyrrolidin-2-one) Bearing Pendant Activated Disulfide Groups. Macromolecular Rapid Communications, 2006, 27, 1060-1066.	3.9	12
87	Micro- and Nanoscale Modification of Poly(2-hydroxyethyl methacrylate) Hydrogels by AFM Lithography and Nanoparticle Incorporation. Journal of Nanoscience and Nanotechnology, 2005, 5, 425-430.	0.9	2
88	Synthesis and preliminary evaluation of poly(amidoamine)–melittin conjugates as endosomolytic polymers and/or potential anticancer therapeutics. International Journal of Pharmaceutics, 2005, 300, 102-112.	5. 2	50
89	Evidence of aggregation in dilute solution of amphoteric poly(amido-amine)s by size exclusion chromatography. Biomedical Chromatography, 2005, 19, 196-201.	1.7	8
90	Novel Poly(amido-amine)-Based Hydrogels as Scaffolds for Tissue Engineering. Macromolecular Bioscience, 2005, 5, 613-622.	4.1	60

#	Article	IF	Citations
91	New poly(amidoamine)s containing disulfide linkages in their main chain. Journal of Polymer Science Part A, 2005, 43, 1404-1416.	2.3	119
92	Synthesis, Acid-Base Properties and Preliminary Cell Compatibility Evaluation of Amphoteric Poly(Amido-Hydrazine)s. Journal of Bioactive and Compatible Polymers, 2005, 20, 377-394.	2.1	4
93	Novel Agmatine-Containing Poly(amidoamine) Hydrogels as Scaffolds for Tissue Engineering. Biomacromolecules, 2005, 6, 2229-2235.	5.4	70
94	Poly(ethylene glycol)-Poly(ester-carbonate) Block Copolymers Carrying PEG-Peptidyl-Doxorubicin Pendant Side Chains:Â Synthesis and Evaluation as Anticancer Conjugates. Biomacromolecules, 2005, 6, 914-926.	5.4	54
95	Synthesis of 3,3-Di(ethoxycarbonyl)-1-vinylpyrrolidin-2-one and Determination of Its Reactivity Ratios with 1-Vinylpyrrolidin-2-one. Macromolecules, 2005, 38, 8211-8219.	4.8	19
96	PHEMA Hydrogels Obtained by a Novel Low-Heat Curing Procedure with a Potential for In Situ Preparation. Macromolecular Bioscience, 2004, 4, 591-600.	4.1	6
97	End-Functionalised 1-Vinyl-2-Pyrrolidinone Oligomers Bearing Lactate Functions at One End. Macromolecular Bioscience, 2004, 4, 706-713.	4.1	14
98	Synthesis and Endosomolytic Properties of Poly(amidoamine) Block Copolymers. Macromolecular Bioscience, 2004, 4, 922-929.	4.1	33
99	Poly(amidoamine) Salt Form:Â Effect on pH-Dependent Membrane Activity and Polymer Conformation in Solution. Biomacromolecules, 2004, 5, 1102-1109.	5.4	30
100	Understanding the Mechanism of Action of Poly(amidoamine)s as Endosomolytic Polymers:Â Correlation of Physicochemical and Biological Properties. Biomacromolecules, 2004, 5, 1422-1427.	5.4	59
101	Crosslinked Poly(amido-amine)s as Superior Matrices for Chemical Incorporation of Highly Efficient Organic Nonlinear Optical Dyes. Macromolecular Rapid Communications, 2003, 24, 397-402.	3.9	11
102	2-[(1-Imidazolyl)formyloxy]ethyl Methacrylate as Selective Methacryloylating Agent: Kinetics of Reaction with Model Alcohols and Amines. Macromolecular Bioscience, 2003, 3, 742-748.	4.1	2
103	Poly(amido-amine)s Carrying Primary Amino Groups as Side Substituents. Macromolecular Bioscience, 2003, 3, 59-66.	4.1	16
104	PLGA–PEG microspheres of teverelix: influence of polymer type on microsphere characteristics and on teverelix in vitro release. International Journal of Pharmaceutics, 2003, 261, 69-80.	5.2	25
105	Design and synthesis of new functional polymers for nonlinear optical applications. Synthetic Metals, 2003, 139, 629-632.	3.9	15
106	Polycaprolactoneâ^'Poly(ethylene glycol) Multiblock Copolymers as Potential Substitutes for Di(ethylhexyl) Phthalate in Flexible Poly(vinyl chloride) Formulations. Biomacromolecules, 2003, 4, 181-188.	5.4	58
107	Elastomeric Polymers. 2. NMR and NMR Imaging Characterization of Cross-Linked PDMS. Macromolecules, 2002, 35, 1722-1729.	4.8	26
108	Elastomeric Polymers. 1. Application of Proton NMR Imaging to the Morphological Study of a Silicone Rubber. Macromolecules, 2002, 35, 1714-1721.	4.8	2

#	Article	IF	CITATIONS
109	Poly(amido-amine)s: Biomedical Applications. Macromolecular Rapid Communications, 2002, 23, 332-355.	3.9	196
110	Poly(Amidoamine)s as Potential Nonviral Vectors:Â Ability to Form Interpolyelectrolyte Complexes and to Mediate Transfection in Vitro. Biomacromolecules, 2001, 2, 1023-1028.	5.4	123
111	Synthesis and Preliminary Biological Evaluation of Novel Functionalised Poly(ethylene) Tj ETQq1 1 0.784314 rgB Macromolecular Bioscience, 2001, 1, 164-169.	T /Overloc 4.1	k 10 Tf 50 6 6
112	Polycarboxylated Derivatives of b.beta;-Cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 39, 139-143.	1.6	7
113	Preparation and characterisation of rose Bengal-loaded surface-modified albumin nanoparticles. Journal of Controlled Release, 2001, 71, 117-126.	9.9	60
114	Poly(amidoamine)-mediated intracytoplasmic delivery of ricin A-chain and gelonin. Journal of Controlled Release, 2001, 77, 225-232.	9.9	56
115	Use of New Aminosugar Derivatives as Comonomers for the Synthesis of Glycosylated Poly(Amido-Amines). Journal of Bioactive and Compatible Polymers, 2001, 16, 479-491.	2.1	6
116	Poly(amido-amines)s with novel molecular architecture: Synthesis and thermodynamic studies of protonation and metal $[Cu(II), Zn(II)]$ ion complexes. Macromolecular Chemistry and Physics, 2000, 201, 1793-1801.	2.2	4
117	Therapeutic proteins: a comparison of chemical and biological properties of uricase conjugated to linear or branched poly(ethylene glycol) and poly(N-acryloylmorpholine). Il Farmaco, 2000, 55, 264-269.	0.9	91
118	PAcM-AN: Poly(N-Acryloylmorpholine)-Conjugated Antisense Oligonucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 1281-1288.	1.1	4
119	Amphoteric Linear Poly(amido-amine)s as Endosomolytic Polymers:Â Correlation between Physicochemical and Biological Properties. Macromolecules, 2000, 33, 7793-7800.	4.8	114
120	Poly(amidoamine)s as Potential Endosomolytic Polymers: EvaluationIn Vitroand Body Distribution in Normal and Tumour-Bearing Animals. Journal of Drug Targeting, 1999, 6, 391-404.	4.4	113
121	Synthesis, characterisation and antitumour activity of platinum(II) complexes of novel functionalised poly(amido amine)s. Macromolecular Chemistry and Physics, 1999, 200, 1644-1654.	2.2	92
122	<title>Incorporation of highly efficient second- and third-order nonlinear optical chromophores into poly(amido-amine) backbones</title> ., 1999,,.		2
123	A novel modification of poly(L-lysine) leading to a soluble cationic polymer with reduced toxicity and with potential as a transfection agent. Macromolecular Chemistry and Physics, 1998, 199, 2565-2575.	2.2	37
124	Tailor-Made Soluble Polymer Carriers. , 1998, , 207-224.		10
125	Synthesis and pharmacokinetic behaviour of ester derivatives of 4-isobutylphenyl-2-propionic acid (Ibuprofen) with end-hydroxylated poly(N-vinyl pyrrolidinone) and poly(N-acryloyl morpholine) oligomers. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 741-754.	3.5	20
126	Preparation of surface-modified albumin nanospheres. Biomaterials, 1997, 18, 559-565.	11.4	58

#	Article	IF	Citations
127	Development and application of mass sensors based on flexural resonances in alumina beams. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1996, 43, 601-608.	3.0	38
128	Multifunctional Polymers for Sensing Applications. Polymers for Advanced Technologies, 1996, 7, 529-536.	3.2	4
129	Poly(ester - carbonates) Containing Poly(lactic - glycolic acid) and Poly(ethylene glycol) Segments. Polymers for Advanced Technologies, 1996, 7, 536-542.	3.2	6
130	Poly(N-acryloylmorpholine) as a new soluble support for the liquid-phase synthesis of oligonucleotides. Tetrahedron Letters, 1996, 37, 4761-4764.	1.4	16
131	Degradation behaviour of block copolymers containing poly(lactic-glycolic acid) and poly(ethylene) Tj ETQq1 1 0.	.784314 r _{	gBT /Overloc
132	Synthesis and molecular weight characterization of end-functionalized N-vinyl-2-pyrrolidone oligomers. Macromolecular Chemistry and Physics, 1995, 196, 763-774.	2.2	49
133	Synthesis of low molecular weight poly(N-acryloylmorpholine) end-functionalized with primary amino groups, and its use as macromonomer for the preparation of poly(amidoamines). Macromolecular Chemistry and Physics, 1995, 196, 2927-2939.	2.2	15
134	New Synthetic Amphiphilic Polymers for Steric Protection of Liposomes in Vivo. Journal of Pharmaceutical Sciences, 1995, 84, 1049-1053.	3.3	152
135	Use of poly(amidoamines) as CO2- and Si2-sensitive material for gravimetric sensors. Mikrochimica Acta, 1995, 120, 257-270.	5.0	10
136	On the catalytic activity of Mo(VI)-grafted poly(thioether-amido-acid) crosslinked resins in liquid-phase cyclohexene epoxidation with t-butyl hydroperoxide. Reactive and Functional Polymers, 1995, 26, 67-74.	4.1	5
137	Modification of albumins by grafting poly(amido amine) chains. Polymer, 1995, 36, 2989-2994.	3.8	19
138	Synthesis and properties of novel block copolymers containing poly(lactic-glycolic acid) and poly(ethyleneglycol) segments. Biomaterials, 1995, 16, 1423-1428.	11.4	37
139	Physico-Chemical and Biological Properties of Monofunctional Hydroxy Teriminating Poly(N-Vinylpyrrolidone) Conjugated Superoxide Dismutase. Journal of Bioactive and Compatible Polymers, 1995, 10, 103-120.	2.1	38
140	On the suitability of urethane bonds between the carrier and the drug moiety in poly(ethyleneglycol)-based oligomeric prodrugs. Journal of Biomaterials Science, Polymer Edition, 1995, 6, 133-139.	3.5	5
141	Degradation behaviour of ionic stepwise polyaddition polymers of medical interest. Journal of Biomaterials Science, Polymer Edition, 1995, 6, 833-844.	3 . 5	28
142	Pharmacokinetic results on naproxen prodrugs based on poly(ethyleneglycol)s. Journal of Biomaterials Science, Polymer Edition, 1995, 6, 141-147.	3.5	11
143	A comparison between the hemolytic and antibacterial activities of new quaternary ammonium polymers. Journal of Biomaterials Science, Polymer Edition, 1995, 6, 533-539.	3.5	10
144	Low Molecular Weight End-Functionalized Poly(N-Vinylpyrrolidinone) for the Modification of Polypeptide Aminogroups. Journal of Bioactive and Compatible Polymers, 1994, 9, 411-428.	2.1	31

#	Article	IF	Citations
145	A Polymer-Triton X-100 Conjugate Capable of PH-Dependent Red Blood Cell Lysis: A Model System Illustrating the Possibility of Drug Delivery Within Acidic Intracellular Compartments. Journal of Drug Targeting, 1994, 2, 341-347.	4.4	36
146	Poly(ethyleneglycol)s-based hydrogels as coatings for relative humidity sensors. Polymer Gels and Networks, 1994, 2, 119-133.	0.6	7
147	Modification of lipase fromPseudomonas sp. with poly(acryloylmorpholine) and study of its catalytic properties in organic solvents. Biotechnology Letters, 1994, 16, 1069-1074.	2.2	5
148	Synthesis and molecular weight characterization of low molecular weight end-functionalized poly(4-acryloylmorpholine). Macromolecular Chemistry and Physics, 1994, 195, 3469-3479.	2.2	45
149	Block copolymers containing poly(ethylene glycol) and poly(thioether/amido acid) segments. Macromolecular Rapid Communications, 1994, 15, 659-667.	3.9	3
150	New high-molecular-weight poly(ester-carbonates) by chain extension of poly(lactic-glycolic acid). Macromolecular Rapid Communications, 1994, 15, 683-690.	3.9	7
151	Recent results on functional polymers and macromonomers of interest as biomaterials or for biomaterial modification. Biomaterials, 1994, 15, 1235-1241.	11.4	56
152	In situ polymerization of functional monomers in rubbers: 1. Modification of silicone rubbers by a poly(ester thioether amine) based on piperazine. Polymer, 1994, 35, 5571-5576.	3.8	4
153	NMR Studies, Molecular Characterization, and Degradation Behavior of Poly(amido amine)s. 1. Poly(amido amine) Deriving from the Polyaddition of 2-Methylpiperazine to 1,4-Bis(acryloyl)piperazine. Macromolecules, 1994, 27, 7171-7178.	4.8	33
154	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 3329-3339.	1.1	4
155	Tertiary Amino Polymers by Polyaddition of 2,2′-Alkylenediiminodiethanethiols to 1,4-Bismethacryoylpiperazine. Polymer Journal, 1993, 25, 625-631.	2.7	5
156	Thermal characterization of macromolecular metal complexes of mo(VI) as heterogeneous oxidation catalysts. Makromolekulare Chemie Macromolecular Symposia, 1992, 59, 381-387.	0.6	3
157	Synthesis of a new family of poly(amido-amine)s carrying poly(oxyethylene) side chains. Die Makromolekulare Chemie, 1992, 193, 937-943.	1.1	9
158	Block copolymers containing poly(ethylene glycol) and poly(amido-amine) or poly(amido-thioether-amine) segments. Macromolecules, 1991, 24, 3747-3752.	4.8	24
159	New polymeric acids containing potentially hydrolyzable bonds. Macromolecules, 1991, 24, 4554-4558.	4.8	14
160	New quaternary ammonium polymers as antimicrobial agents. Part II. Alkylation products of linear aliphatic poly (aminodisulphides). Journal of Biomaterials Science, Polymer Edition, 1991, 2, 255-261.	3.5	10
161	New Polydentate Mo(vi) - Grafted Poly(Amido Amine) Resins as Heterogeneous Epoxidation Catalysts. Studies in Surface Science and Catalysis, 1991, , 431-436.	1.5	5
162	New Functional Polymers for Medical Applications. Polymer Journal, 1991, 23, 541-550.	2.7	8

#	Article	IF	CITATIONS
163	New basic multifunctional polymers: 5. Poly(esterthioetheramine)s by polyaddition of 2,2′-alkylenediimino diethanethiols to bisacrylic and bismethacrylic esters. Polymer, 1991, 32, 2876-2879.	3.8	15
164	Poly(amidoamine)s with potential as drug carriers: degradation and cellular toxicity. Journal of Biomaterials Science, Polymer Edition, 1991, 2, 303-315.	3. 5	65
165	New carboxylated Mo(VI)-grafted poly(amidoamine) resins as heterogeneous oxygen transfer catalysts. Journal of Applied Polymer Science, 1990, 41, 1923-1927.	2.6	11
166	Isothermal crystallisation kinetics of liquid crystal semiflexible polyesters. Thermochimica Acta, 1990, 162, 179-188.	2.7	17
167	Hydroxyt-Terminated Polyvinylpyrrolidone for the Modification of Polypeptides. Journal of Bioactive and Compatible Polymers, 1990, 5, 167-178.	2.1	27
168	A New Synthetic Method for Amino-Terminated Poly (Ethyleneglycol) Derivatives. Synthetic Communications, 1990, 20, 2951-2957.	2.1	17
169	Vinyl polymers containing amido and carboxylic groups as side substituents: I. Synthesis of N-acryloyl-glycine and N-acryloyl-6-caproic acid and their grafting on cellulose membranes. Polymer, 1989, 30, 1751-1757.	3.8	16
170	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1988, 9, 807-811.	1.1	13
171	Poly(esterthioetheramines), a new family of tertiary amino polymers. Journal of Polymer Science, Polymer Letters Edition, 1988, 26, 357-360.	0.4	17
172	Review: Oligomeric Drug Carriers. Journal of Bioactive and Compatible Polymers, 1987, 2, 148-167.	2.1	1
173	New Acrylic Polymers for Surface Modification of Enzymes of Therapeutic Interest and for Enzyme Immobilization. Annals of the New York Academy of Sciences, 1987, 501, 444-448.	3 . 8	8
174	Surface characterization of heparin-complexing poly(amido amine) chains grafted on polyurethane and glass surfaces. Journal of Biomedical Materials Research Part B, 1987, 21, 443-457.	3.1	19
175	Chemical and biological evaluation of heparinized poly(amido-amine) grafted polyurethane. Biomaterials, 1987, 8, 61-66.	11.4	21
176	A material (PUPA) presenting both the properties of polyurethanes and the capacity of adsorbing a high quantity of heparin. Biomaterials, 1987, 8, 306-310.	11.4	8
177	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1987, 8, 549-553.	1.1	12
178	Spectroscopic and calorimetric studies of the complexing ability of some polyamido polymers containing amino-acid residues. Journal of the Chemical Society Dalton Transactions, 1986, , 2325.	1.1	10
179	Spectroscopic and calorimetric studies on the protonation of polymeric amino acids. Macromolecules, 1986, 19, 1856-1861.	4.8	37
180	Synthesis and partition profiles of nicotinic acid derivatives with oligomeric carriers. Journal of Controlled Release, 1986, 3, 185-191.	9.9	5

#	Article	IF	Citations
181	Acid-base and metal ion complex formation properties of polymers containing amino acid residues. Macromolecules, 1986, 19, 37-42.	4.8	44
182	Title is missing!. Die Makromolekulare Chemie, 1986, 187, 1953-1962.	1.1	4
183	Polymerization of Bisacrylic Monomers within a Liquid-Crystalline Smectic B Solvent. Liquid Crystals, 1986, 1, 327-336.	2.2	22
184	Polymers as Matrices for Drug Release. , 1986, , 165-182.		0
185	Heparin Immobilization on Polyurethane Surface; Grafting of Heparin Complexing Poly(Amido-Amine)s., 1986,, 67-84.		0
186	FTIR Characterization Of Poly(Amido-Amine)S Either In Solution Or Grafted On Materials. Proceedings of SPIE, 1985, , .	0.8	0
187	Synthesis, physico-chemical properties and biomedical applications of poly(amidoamine)s. Polymer, 1985, 26, 1336-1348.	3.8	108
188	Surface-grafted heparinizable materials. Polymer, 1985, 26, 1349-1352.	3.8	36
189	New developments in macroinorganics â€" the thermodynamics of basic polymers. Polymer, 1985, 26, 1353-1358.	3.8	7
190	Heparinizable materials (IV). Surface-grafting on poly(ethylene terephthalate) of heparin-complexing poly(amido-amine) chains. Biomaterials, 1985, 6, 102-104.	11.4	14
191	Surface modification of proteins by covalent binding of acrylic polymers. Applied Biochemistry and Biotechnology, 1985, 11, 269-277.	2.9	17
192	Thermotropic liquid crystalline poly (\hat{l}^2 -thioester)s containing azoxybenzene mesogenic units. European Polymer Journal, 1985, 21, 727-732.	5.4	25
193	Surface grafting of heparin-complexing poly(aminoamide) on poly(ethylene terephthalate) (dacron). Die Makromolekulare Chemie, 1985, 9, 233-238.	1.1	2
194	Title is missing!. Die Makromolekulare Chemie, 1985, 186, 2291-2300.	1.1	25
195	Poly(ethylene glycol) imidazolyl formates as oligomeric drug-binding matrices. Journal of Controlled Release, 1985, 1, 251-257.	9.9	14
196	Linear amino polymers: Synthesis, protonation and complex formation. Advances in Polymer Science, 1984, , 55-92.	0.8	43
197	Anticoagulative surfaces: XPS study of polyamidoamine derivatives bonded to glass surface and of their complexes with heparin. Inorganica Chimica Acta, 1984, 93, L47-L48.	2.4	3
198	Heparinizable materials (III). Heparin retention power of a poly(amido-amine) either as crosslinked resin, or surface-grafted on PVC. Biomaterials, 1984, 5, 234-236.	11.4	24

#	Article	lF	CITATIONS
199	Synthesis and characterization of piperazine-derived poly(amido-amine)s with different distributions of amido- and amino-groups along the macromolecular chain. Polymer, 1984, 25, 863-868.	3.8	12
200	Fractionation techniques in a hydro-organic environment. Analytical Biochemistry, 1984, 137, 420-428.	2.4	42
201	Title is missing!. Die Makromolekulare Chemie, 1984, 185, 1525-1535.	1.1	17
202	Thermotropic liquid crystalline poly(\hat{l}^2 -thioester)s. Journal of Polymer Science, Polymer Letters Edition, 1984, 22, 587-593.	0.4	23
203	New Oligomers and Polymers as Drug Carriers. , 1984, , 63-76.		3
204	Applied macroinorganics. IV. Effect of the crosslinking agent on protonation, and metal ions complexing abilities, of ion exchange resins with poly(amido–amine) structure. Journal of Applied Polymer Science, 1983, 28, 3361-3368.	2.6	14
205	Thermotropic poly(\hat{l}^2 -aminoester)s containing azoxy groups. Die Makromolekulare Chemie Rapid Communications, 1983, 4, 681-686.	1.1	27
206	Oxidative coupling catalyzed by copper complexes of poly(amido-amines). Journal of Molecular Catalysis, 1983, 18, 149-157.	1.2	8
207	Heparin adsorbing capacities at physiological pH of three poly(amido-amine) resins, and of poly(amido-amine)-surface-grafted glass microspheres. Biomaterials, 1983, 4, 218-221.	11.4	32
208	Macroinorganics. 9. Enthalpies of protonation and copper(II) complex formation of some poly(amidoamines). Macromolecules, 1983, 16, 1159-1164.	4.8	14
209	Effect of different shielding groups on the polyelectrolyte behavior of polyamines. Macromolecules, 1983, 16, 456-462.	4.8	63
210	Oligomeric Derivatives of $3\hat{l}_{\pm}$, $7\hat{l}^2$ -D lhydroxy- $5\hat{l}^2$ -Cholan-24-Oic Acid (Ursodeoxycholic Acid). Synthetic Communications, 1983, 13, 701-706.	2.1	28
211	Synthesis of A High Molecular Weight Polymeric Die Rivative of $3\hat{l}_{\pm}$, $7\hat{l}^2$ -Dihydroxy-53-Cholan-24-Oic Acid (Ursodeoxycholic Acid). Synthetic Communications, 1983, 13, 707-713.	2.1	12
212	New Polymeric and Oligomeric Matrices as Drug Carriers. , 1983, , 77-95.		9
213	Catalysis by polyelectrolytes whose monomeric units behave independently: effect of a poly(amido) Tj ETQq $1\ 1\ 0$.784314 r 4.8	gBT /Overlo
214	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1982, 3, 909-912.	1.1	9
215	Applied macroinorganics. II. Protonation and heavy metal ions complex-formation behavior of three crosslinked resins of poly(amido-amine) structure. Journal of Applied Polymer Science, 1982, 27, 2239-2248.	2.6	19
216	Preparation and ESCA characterization of poly(vinyl chloride) surf ace-grafted with heparin-complexing poly(amido amine) chains. Biomaterials, 1982, 3, 33-37.	11.4	32

#	Article	IF	CITATIONS
217	Macroinorganics: 8. Chelation of copper(II) ion with some new poly(amido-amines). Polymer, 1982, 23, 148-151.	3.8	24
218	Activated derivatives of succinic and glutaric half-esters of polypropylene glycols, and their exchange reactions with hydroxy- and amino-compounds. Polymer, 1982, 23, 1689-1692.	3.8	11
219	The Mannich bases in polymer synthesis: 3. Reduction of poly(\hat{l}^2 -aminoketone)s to poly(\hat{l}^3 -aminoalcohol)s and their N-alkylation to poly(\hat{l}^3 -hydroxy quaternary ammonium salt)s. Polymer, 1982, 23, 1693-1697.	3.8	4
220	Synthesis of tertiary poly(amido-amine)s with amido- and amino-groups randomly arranged along the macromolecular chain. Polymer, 1982, 23, 1233-1236.	3.8	8
221	Synthesis and pharmacological evaluation of poly(oxyethylene) derivatives of 4-isobutylphenyl-2-propionic acid (ibuprofen). Journal of Medicinal Chemistry, 1981, 24, 622-625.	6.4	74
222	Macroinorganics. 7. Property structure relationships for polymeric bases whose monomeric units behave independently toward protonation. Macromolecules, 1981, 14, 1203-1209.	4.8	58
223	Macro-inorganics. Part 6. Protonation and complex formation of a new series of polymers whose repeating units behave independently. Journal of the Chemical Society Dalton Transactions, 1981, , 539.	1.1	17
224	Protonation and complex formation with heavy-metal ions of two tetrafunctional amines and of a new structurally related ion-exchange resin. Journal of the Chemical Society Dalton Transactions, 1981, , 2559.	1.1	10
225	Structure and properties of synthetic polymers of pharmacological and biomedical interest. Die Makromolekulare Chemie, 1981, 5, 1-14.	1.1	15
226	Title is missing!. Die Makromolekulare Chemie, 1981, 182, 2183-2192.	1.1	46
226	Title is missing!. Die Makromolekulare Chemie, 1981, 182, 2183-2192. Poly(β-aminoketone)s by polycondensation of bis(β-dialkylaminoketone)s with bisamines. Journal of Polymer Science, Polymer Letters Edition, 1981, 19, 443-450.	0.4	46
	Poly(\hat{l}^2 -aminoketone)s by polycondensation of bis(\hat{l}^2 -dialkylaminoketone)s with bisamines. Journal of		
227	Poly(β-aminoketone)s by polycondensation of bis(β-dialkylaminoketone)s with bisamines. Journal of Polymer Science, Polymer Letters Edition, 1981, 19, 443-450. The structure of the polymer formed from methylglyoxal in the presence of L(+)-lysine. Biomaterials,	0.4	7
227	Poly(β-aminoketone)s by polycondensation of bis(β-dialkylaminoketone)s with bisamines. Journal of Polymer Science, Polymer Letters Edition, 1981, 19, 443-450. The structure of the polymer formed from methylglyoxal in the presence of L(+)-lysine. Biomaterials, 1981, 2, 166-170. Solution characterization of starch nicotinates with different degrees of esterification.	0.4	2
227 228 229	Poly(β-aminoketone)s by polycondensation of bis(β-dialkylaminoketone)s with bisamines. Journal of Polymer Science, Polymer Letters Edition, 1981, 19, 443-450. The structure of the polymer formed from methylglyoxal in the presence of L(+)-lysine. Biomaterials, 1981, 2, 166-170. Solution characterization of starch nicotinates with different degrees of esterification. Biomaterials, 1981, 2, 49-52. An attempt to synthesize regular cresolic resins through solid-state polycondensation. Polymer, 1981,	0.4 11.4 11.4	7 2 4
227 228 229 230	Poly(β-aminoketone)s by polycondensation of bis(β-dialkylaminoketone)s with bisamines. Journal of Polymer Science, Polymer Letters Edition, 1981, 19, 443-450. The structure of the polymer formed from methylglyoxal in the presence of L(+)-lysine. Biomaterials, 1981, 2, 166-170. Solution characterization of starch nicotinates with different degrees of esterification. Biomaterials, 1981, 2, 49-52. An attempt to synthesize regular cresolic resins through solid-state polycondensation. Polymer, 1981, 22, 1257-1262. Poly(β-ketothioethers) by polycondensation of bis-β-dialkylaminoketones with bis-thiols. Polymer, 1981,	0.4 11.4 11.4 3.8	7 2 4
227 228 229 230	Poly(β-aminoketone)s by polycondensation of bis(β-dialkylaminoketone)s with bisamines. Journal of Polymer Science, Polymer Letters Edition, 1981, 19, 443-450. The structure of the polymer formed from methylglyoxal in the presence of L(+)-lysine. Biomaterials, 1981, 2, 166-170. Solution characterization of starch nicotinates with different degrees of esterification. Biomaterials, 1981, 2, 49-52. An attempt to synthesize regular cresolic resins through solid-state polycondensation. Polymer, 1981, 22, 1257-1262. Poly(β-ketothioethers) by polycondensation of bis-β-dialkylaminoketones with bis-thiols. Polymer, 1981, 22, 270-271. Thermodynamics of protonation of polymeric bases whose repeating units behave independently.	0.4 11.4 11.4 3.8	7 2 4 1

#	Article	IF	CITATIONS
235	Thermodynamic studies on the protonation and complex formation of new tertiary animo polymers in aqueous solution. Inorganica Chimica Acta, 1980, 40, X58-X59.	2.4	O
236	Thermodynamic and 13C n.m.r. data on the protonation of polymeric bases whose repeating units behave independently towards protonation. Polymer, 1980, 21, 81-85.	3.8	26
237	Macro-inorganics. Part 3. Chelation of copper(II) ion with some polymers having a poly(amido-amine) structure and their non-macromolecular models. Journal of the Chemical Society Dalton Transactions, 1980, , 253.	1.1	19
238	Synthesis and exchange reactions of biodegradable drug-binding matrices. Die Makromolekulare Chemie, 1979, 180, 375-382.	1.1	37
239	Macroinorganics IV: Thermodynamic functions relative to the protonation of a poly(amido-amine) with repeating unit containing 3 amino groups. Polymer, 1979, 20, 1298-1300.	3.8	16
240	Protonation and complex formation of some novel poly(amido-amines). Polymer, 1979, 20, 1061-1062.	3.8	27
241	Synthesis by a novel cyclization reaction and crystal and molecular structure of 4-ethyl-1-isopropyl-3-[(phenylcarbamoyl)methyl]-3-pyrrolin-2-one. Journal of the Chemical Society Perkin Transactions II, 1979, , 1391.	0.9	3
242	Synthesis and exchange reactions of some polymeric benzotriazolides. Journal of Polymer Science: Polymer Chemistry Edition, 1978, 16, 1435-1441.	0.8	18
243	Synthesis and characterization of a potentially non-thrombogenic polyethylene-poly(amido-amine) graft copolymer. Polymer, 1978, 19, 1063-1066.	3.8	19
244	Protonation studies of multifunctional polymers with a poly(amido-amine) structure. Polymer, 1978, 19, 1329-1334.	3.8	31
245	Structure and solid state photopolymerization of pentaerythritol tetracinnamate. Polymer, 1977, 18, 161-163.	3.8	10
246	Structural and mechanical properties of new block copolymers designed for biomedical use. Polymer, 1977, 18, 387-390.	3.8	23
247	Synthesis and properties of new potentially nonthrombogenic polymeric materials. Journal of Polymer Science: Polymer Chemistry Edition, 1977, 15, 2151-2162.	0.8	25
248	Macromolecular drugs I : Long-lasting antilipolytic activity of nicotinic acid bound to a polymer. Pharmacological Research Communications, 1976, 8, 379-386.	0.2	31
249	Macromolecular drugs acting as precursors of non-macromolecular active substances â€" Preliminary considerations. Pharmacological Research Communications, 1975, 7, 1-13.	0.2	18
250	Poly-1-acryloylbenzotriazole as polyester and polyacrylamide precursor. Journal of Polymer Science: Polymer Chemistry Edition, 1974, 12, 553-559.	0.8	28
251	A selective de-heparinizer filter made of new cross-linked polymers of a poly-amido-amine structure. Experientia, 1973, 29, 93-95.	1.2	47
252	Effects of a series of new synthetic high polymers on cancer metastases. Journal of Medicinal Chemistry, 1973, 16, 496-499.	6.4	40

#	Article	IF	CITATIONS
253	Functionalization of Polymers. , 1973, , 73-101.		14
254	Substituted 3-anilinoindoles and anilinoacetanilides from the reaction of glyoxal with N-alkylanilines: crystal structure of 5-chloro-3-(4-chloro-N-methylanilino)-1-methylindole. Journal of the Chemical Society Perkin Transactions 1, 1972, , 2001-2003.	0.9	1
255	Linear, high molecular weight poly(2-alkyl-4-vinyl-6-(dialkylaminomethyl)phenols) and poly(2,6-bis(dialkylaminomethyl)-4-vinylphenols). Polymer, 1972, 13, 184-186.	3.8	7
256	High polymers of acrylic and methacrylic esters of N-hydroxysuccinimide as polyacrylamide and polymethacrylamide precursors. Polymer, 1972, 13, 462-464.	3.8	122
257	Substituted aminoacetamides by reaction of glyoxal with secondary amines. Journal of the Chemical Society C, Organic, 1971, .	0.2	6
258	Synthesis of tertiary amine polymers. Polymer, 1970, 11, 88-113.	3.8	151
259	A new antagonist of heparin: Partially N-oxidized poly-allyldiethylamine. European Journal of Pharmacology, 1970, 12, 236-242.	3.5	22
260	Aminoacetamides by treatment of $1,1,2,2$ -tetra-aminoethanes with water. Journal of the Chemical Society C, Organic, 1970, .	0.2	1
261	Ion-Chelating Polymers: Medical Applications. , 0, , 4131-4157.		O