Huai Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4983156/huai-wang-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

261
papers

5,848
citations

8,204
ext. papers

8,204
ext. citations

36
h-index

4.9
avg, IF

6,71
L-index

#	Paper	IF	Citations
261	Reliability Improvement of Voltage Regulator Modules by a Virtual Series Voltage Source. <i>IEEE Transactions on Industrial Electronics</i> , 2022 , 1-1	8.9	
260	EMI Filter Robustness in Three-Level Active Neutral-Point-Clamped Inverter. <i>IEEE Transactions on Power Electronics</i> , 2022 , 37, 4641-4657	7.2	1
259	A Mixed Conduction Mode Controlled Bridgeless Boost PFC Converter and Its Mission Profile Based Reliability Analysis. <i>IEEE Transactions on Power Electronics</i> , 2022 , 1-1	7.2	2
258	High Power Factor Bridgeless Integrated Buck-Type PFC Converter with Wide Output Voltage Range. <i>IEEE Transactions on Power Electronics</i> , 2022 , 1-1	7.2	1
257	A Parasitic Effect Compensation Method for IGBT On-state Voltage Measurement in Traction Inverter Application. <i>IEEE Transactions on Power Electronics</i> , 2021 , 1-1	7.2	
256	A Robust Testing Method for DC and AC Capacitors with Minimum Required Power Supply. <i>IEEE Transactions on Power Electronics</i> , 2021 , 1-1	7.2	1
255	Robust Stability Assessment of Single-phase Inverter with Multi-parameter Distributions. <i>IEEE Transactions on Power Electronics</i> , 2021 , 1-1	7.2	1
254	An On-line Calibration Method for TSEP-based Junction Temperature Estimation. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	O
253	Differential Mode Noise Estimation and Filter Design for Interleaved Boost Power Factor Correction Converters. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 2716	2.6	1
252	Enabling Data-Driven Condition Monitoring of Power Electronic Systems With Artificial Intelligence: Concepts, Tools, and Developments. <i>IEEE Power Electronics Magazine</i> , 2021 , 8, 18-27	1.5	7
251	Bridgeless PFC Topology Simplification and Design for Performance Benchmarking. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 5398-5414	7.2	10
250	Robustness Assessment of the EMI Filter in a Three-Level Inverter 2021,		1
249	A Composite Failure Precursor for Condition Monitoring and Remaining Useful Life Prediction of Discrete Power Devices. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 17, 688-698	11.9	19
248	An Improved di/dt-RCD Detection for Short-Circuit Protection of SiC mosfet. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 12-17	7.2	7
247	Lifetime Prediction of DC-Link Capacitors in Multiple Drives System Based on Simplified Analytical Modeling. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 844-860	7.2	9
246	A Converter-Level on-State Voltage Measurement Method for Power Semiconductor Devices. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 1220-1224	7.2	10
245	A Digital Twin Based Estimation Method for Health Indicators of DCDC Converters. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 2105-2118	7.2	27

244	Design for Accelerated Testing of DC-Link Capacitors in Photovoltaic Inverters Based on Mission Profiles. <i>IEEE Transactions on Industry Applications</i> , 2021 , 57, 741-753	4.3	1
243	Reliability of Power Electronic Systems for EV/HEV Applications. <i>Proceedings of the IEEE</i> , 2021 , 109, 10	60-4.97	'6 13
242	An Overview of Artificial Intelligence Applications for Power Electronics. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 4633-4658	7.2	94
241	Analytical Modeling and Design of Capacitor Bank Considering Thermal Coupling Effect. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 2629-2640	7.2	2
240	An Overview of Condition Monitoring Techniques for Capacitors in DC-Link Applications. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 3692-3716	7.2	39
239	Parasitics of Orthocyclic Windings in Inductors and Transformers. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 1994-2008	7.2	2
238	Investigation of Switching Oscillations for Silicon Carbide MOSFETs in Three-Level Active Neutral-Point-Clamped Inverters. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2021 , 9, 4839-4853	5.6	3
237	Differential mode noise prediction and analysis in single-phase boost PFC for the new frequency range of 9- 150 kHz. <i>IEEE Journal of Emerging and Selected Topics in Industrial Electronics</i> , 2021 , 1-1	2.6	2
236	Standalone operation of Distributed Generation Systems with Improved Harmonic Elimination Scheme. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2021 , 1-1	5.6	4
235	A Voltage-Based Multiple Fault Diagnosis Approach for Cascaded H-Bridge Multilevel Converters. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2021 , 1-1	5.6	3
234	Health State Estimation and Remaining Useful Life Prediction of Power Devices Subject to Noisy and Aperiodic Condition Monitoring. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2021 , 70, 1-16	5.2	7
233	Power converters and control of LEDs 2021 , 645-688		O
232	Intelligent Transition Control between Grid-Connected and Standalone Modes of Three-Phase Grid-Integrated Distributed Generation Systems. <i>Energies</i> , 2021 , 14, 3979	3.1	2
231	A Self-Power Method for a Converter-Level on-State Voltage Measurement Concept. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 8743-8751	7.2	6
230	Adequacy Evaluation of an Islanded Microgrid. Electronics (Switzerland), 2021, 10, 2344	2.6	О
229	A Simplified On-State Voltage Measurement Circuit for Power Semiconductor Devices. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 10993-10997	7.2	8
228	Safe Operating Area of DC-Link Film Capacitors. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 1101	4-] . <u>1</u> 01	82
227	A granular modeling method for non-uniform panel degradation based on IIV characterization and electroluminescence imaging. <i>Solar Energy</i> , 2021 , 227, 162-178	6.8	

226	Wear-out failure of an IGBT module in motor drives due to uneven thermal impedance of power semiconductor devices. <i>Microelectronics Reliability</i> , 2020 , 114, 113800	1.2	4
225	Reactive Power Impacts on LCL Filter Capacitor Lifetime in Grid-Connected Inverter. <i>IEEE Open Journal of Power Electronics</i> , 2020 , 1, 139-148	2.5	6
224	Practical Submodule Capacitor Sizing for Modular Multilevel Converter Considering Grid Faults. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 3550	2.6	1
223	Artificial Intelligence-Aided Thermal Model Considering Cross-Coupling Effects. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 9998-10002	7.2	12
222	The Faraday Shields Loss of Transformers. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 12194-1220	067.2	7
221	Degradation Analysis of Planar Magnetics 2020 ,		3
220	Model-Based Design and Optimization of Hybrid DC-Link Capacitor Banks. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 8910-8925	7.2	6
219	Capacitor Condition Monitoring Based on the DC-Side Start-Up of Modular Multilevel Converters. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 5589-5593	7.2	13
218	Mission Profile-Based System-Level Reliability Prediction Method for Modular Multilevel Converters. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 6916-6930	7.2	23
217	Single-Phase Bridgeless PFC Topology Derivation and Performance Benchmarking. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 9238-9250	7.2	16
216	Thermal Characterization of Silicon Carbide MOSFET Module Suitable for High-Temperature Computationally Efficient Thermal-Profile Prediction. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2020 , 1-1	5.6	5
215	Power Electronics Reliability: State of the Art and Outlook. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2020 , 1-1	5.6	13
214	An Approximation Model of AC Resistance for Inductor and Transformer Windings with Partial Layers. <i>IEEJ Journal of Industry Applications</i> , 2020 , 9, 549-556	0.7	
213	Uneven Inter-turn Voltage Distribution among Windings of Medium-voltage Medium/High-frequency Transformers 2020 ,		2
212	Diagnostic module for series-connected photovoltaic panels. <i>Solar Energy</i> , 2020 , 196, 243-259	6.8	3
211	A Cost-Constrained Active Capacitor for a Single-Phase Inverter. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 6746-6760	7.2	4
210	Simplified Power Loss Model for Aluminum Electrolytic Capacitors in Single-Phase Inverters. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 4452-4456	7.2	O
209	A Reference Submodule Based Capacitor Condition Monitoring Method for Modular Multilevel Converters. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 6691-6696	7.2	8

(2019-2020)

208	A System Engineering Approach Using FMEA and Bayesian Network for Risk Analysis A Case Study. <i>Sustainability</i> , 2020 , 12, 77	3.6	18
207	Review on reliability of supercapacitors in energy storage applications. <i>Applied Energy</i> , 2020 , 278, 1154	13 6 0.7	59
206	Reduced-Order Thermal Modeling for Photovoltaic Inverters Considering Mission Profile Dynamics. <i>IEEE Open Journal of Power Electronics</i> , 2020 , 1, 407-419	2.5	2
205	A Mission-Profile-Based Tool for the Reliability Evaluation of Power Semiconductor Devices in Hybrid Electric Vehicles 2020 ,		1
204	An Overview of Capacitive DC-Links-Topology Derivation and Scalability Analysis. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 1805-1829	7.2	32
203	. IEEE Transactions on Power Electronics, 2020 , 35, 882-900	7.2	16
202	A Thermal Modeling Method Considering Ambient Temperature Dynamics. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 6-9	7.2	11
2 01	Impact of Modulation Strategies on the Reliability and Harmonics of Impedance-Source Inverters. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2020 , 8, 3968-3981	5.6	16
200	Benchmark of DC-link LC Filters based on Passive Inductor and Two-terminal Active Inductor 2019,		1
199	On the Stability of Power Electronics-Dominated Systems: Challenges and Potential Solutions. <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 7657-7670	4.3	40
198	. IEEE Transactions on Industry Applications, 2019 , 55, 5055-5067	4.3	21
197	Reliability Assessment of Hybrid Capacitor Bank Using Electrolytic- and Film-Capacitors in Three-Level Neutral-Point-Clamped Inverters 2019 ,		4
196	Mission Profile-based Accelerated Testing of DC-link Capacitors in Photovoltaic Inverters 2019,		3
195	First Observations in Degradation Testing of Planar Magnetics 2019 ,		4
194	Condition Monitoring for Submodule Capacitors in Modular Multilevel Converters. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 10403-10407	7.2	18
193	Cost-Volume-Reliability Pareto Optimization of a Photovoltaic Microinverter 2019,		5
192	Sensitivity Analysis of Inductive Power Transfer Systems With Voltage-Fed Compensation Topologies. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 4502-4513	6.8	22
191	Guest Editorial Joint Special Section on Power Conversion & Control in Photovoltaic Power Plants. <i>IEEE Transactions on Energy Conversion</i> , 2019 , 34, 159-160	5.4	1

190	An Improved Stray Capacitance Model for Inductors. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 11153-11170	7.2	28
189	. IEEE Transactions on Power Electronics, 2019 , 34, 11580-11593	7.2	13
188	A Two-Terminal Active Inductor With Minimum Apparent Power for the Auxiliary Circuit. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 1013-1016	7.2	7
187	Wear-Out Failure Analysis of an Impedance-Source PV Microinverter Based on System-Level Electrothermal Modeling. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 3914-3927	8.9	37
186	. IEEE Transactions on Power Electronics, 2019 , 34, 4064-4078	7.2	64
185	Asymmetrical Reactive Power Capability of Modular Multilevel Cascade Converter Based STATCOMs for Offshore Wind Farm. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 5147-5164	7.2	24
184	A DC-Link Capacitor Voltage Ripple Reduction Method for a Modular Multilevel Cascade Converter With Single Delta Bridge Cells. <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 6115-6126	4.3	8
183	A Simplification Method for Power Device Thermal Modeling With Quantitative Error Analysis. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2019 , 7, 1649-1658	5.6	7
182	Simplified Multi-time Scale Thermal Model Considering Thermal Coupling in IGBT Modules 2019,		6
181	A Review on Electrothermal Modeling of Supercapacitors for Energy Storage Applications. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2019 , 7, 1677-1690	5.6	15
180	Condition Monitoring Method for Submodule Capacitor in Modular Multilevel Converter 2019,		1
179	Performance Evaluation of a Two-terminal Active Inductor in the DC-link Filter of a Three-phase Diode Bridge Rectifier 2019 ,		1
178	Computational-Efficient Thermal Estimation for IGBT Modules Under Periodic Power Loss Profiles in Modular Multilevel Converters. <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 4984-4992	4.3	9
177	Degradation modeling for reliability estimation of DC film capacitors subject to humidity acceleration. <i>Microelectronics Reliability</i> , 2019 , 100-101, 113401	1.2	7
176	Benchmarking of capacitor power loss calculation methods for wear-out failure prediction in PV inverters. <i>Microelectronics Reliability</i> , 2019 , 100-101, 113491	1.2	2
175	Analytical Modeling of 9-150 kHz EMI in Single-Phase PFC Converter 2019 ,		2
174	Electro-Thermal Modeling and Design of High-Current Pulse Power Supply for Electrically Assisted Manufacturing. <i>IEEE Access</i> , 2019 , 7, 160377-160384	3.5	1
173	Impact of the Circulating Current Control on Transient Submodule Voltage Stresses for Grid-Tied Modular Multilevel Converters During Grid Faults 2019 ,		1

172	System-Level Power Loss Evaluation of Modular Multilevel Converters 2019,		2
171	Application of Digital Twin Concept in Condition Monitoring for DC-DC Converter 2019,		9
170	Reliability Evaluation of DC-link Capacitors in Multi-drive Systems 2019,		1
169	. IEEE Transactions on Industry Applications, 2019 , 55, 1752-1764	4.3	21
168	On the Practical Design of a Two-Terminal Active Capacitor. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 10006-10020	7.2	14
167	A 1-MHz Series Resonant DC D C Converter With a Dual-Mode Rectifier for PV Microinverters. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 6544-6564	7.2	26
166	Simplified Thermal Modeling for IGBT Modules With Periodic Power Loss Profiles in Modular Multilevel Converters. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 2323-2332	8.9	51
165	Analysis and Mitigation of Dead-Time Harmonics in the Single-Phase Full-Bridge PWM Converter With Repetitive Controllers. <i>IEEE Transactions on Industry Applications</i> , 2018 , 54, 5343-5354	4.3	39
164	2018,		3
163	Lifetime benchmarking of two DC-link passive filtering configurations in adjustable speed drives 2018 ,		7
163 162			7
J	2018,	7.2	
162	Reliability evaluation of an impedance-source PV microconverter 2018, Protection Scheme for Modular Multilevel Converters Under Diode Open-Circuit Faults. <i>IEEE</i>	7.2	1
162 161	Reliability evaluation of an impedance-source PV microconverter 2018, Protection Scheme for Modular Multilevel Converters Under Diode Open-Circuit Faults. <i>IEEE Transactions on Power Electronics</i> , 2018, 33, 2866-2877 A Bidirectional Resonant DCDC Converter Suitable for Wide Voltage Gain Range. <i>IEEE Transactions</i>	7.2 7.2 7.2	1
162 161 160	Reliability evaluation of an impedance-source PV microconverter 2018, Protection Scheme for Modular Multilevel Converters Under Diode Open-Circuit Faults. <i>IEEE Transactions on Power Electronics</i> , 2018, 33, 2866-2877 A Bidirectional Resonant DCDC Converter Suitable for Wide Voltage Gain Range. <i>IEEE Transactions on Power Electronics</i> , 2018, 33, 2957-2975 A Dual Active Bridge Converter With an Extended High-Efficiency Range by DC Blocking Capacitor	,	1 19 41
162 161 160	Reliability evaluation of an impedance-source PV microconverter 2018, Protection Scheme for Modular Multilevel Converters Under Diode Open-Circuit Faults. <i>IEEE Transactions on Power Electronics</i> , 2018, 33, 2866-2877 A Bidirectional Resonant DCDC Converter Suitable for Wide Voltage Gain Range. <i>IEEE Transactions on Power Electronics</i> , 2018, 33, 2957-2975 A Dual Active Bridge Converter With an Extended High-Efficiency Range by DC Blocking Capacitor Voltage Control. <i>IEEE Transactions on Power Electronics</i> , 2018, 33, 5949-5966	7.2	1 19 41 41
162 161 160 159	Reliability evaluation of an impedance-source PV microconverter 2018, Protection Scheme for Modular Multilevel Converters Under Diode Open-Circuit Faults. <i>IEEE Transactions on Power Electronics</i> , 2018, 33, 2866-2877 A Bidirectional Resonant DCDC Converter Suitable for Wide Voltage Gain Range. <i>IEEE Transactions on Power Electronics</i> , 2018, 33, 2957-2975 A Dual Active Bridge Converter With an Extended High-Efficiency Range by DC Blocking Capacitor Voltage Control. <i>IEEE Transactions on Power Electronics</i> , 2018, 33, 5949-5966 . <i>IEEE Transactions on Industry Applications</i> , 2018, 54, 447-457 System-Level Lifetime Prediction for LED Lighting Applications Considering Thermal Coupling Between LED Sources and Drivers. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> ,	7.2	1 19 41 41 56

154	Design for Reliability of Power Electronic Systems 2018 , 1423-1440		18
153	From chip to inverter: Electro-thermal modeling and design for paralleled power devices in high power application. <i>Microelectronics Reliability</i> , 2018 , 87, 271-277	1.2	1
152	Winding design of series AC inductor for dual active bridge converters 2018,		4
151	. IEEE Transactions on Power Electronics, 2018 , 33, 8030-8039	7.2	82
150	Impact of Long-Term Mission Profile Sampling Rate on the Reliability Evaluation of Power Electronics in Photovoltaic Applications 2018 ,		6
149	A Temperature-dependent Thermal Model of Silicon Carbide MOSFET Module for Long-term Reliability Assessment 2018 ,		3
148	Simplified Estimation of the Junction Temperature Fluctuation at the Output Frequency for IGBT Modules in Modular Multilevel Converters 2018 ,		2
147	Balanced Conduction Loss Distribution among SMs in Modular Multilevel Converters 2018,		6
146	Efficiency Enhancement of Bridgeless Buck-Boost PFC Converter with Unity PF and DC Split to Reduce Voltage Stresses 2018 ,		5
145	Mission Profile Based Power Converter Reliability Analysis in a DC Power Electronic Based Power System 2018 ,		5
144	Submodule Level Power Loss Balancing Control for Modular Multilevel Converters 2018,		5
143	Reliability Evaluation and Optimization of Capacitor Bank 2018,		2
142	Impact of the Thermal-Interface-Material Thickness on IGBT Module Reliability in the Modular Multilevel Converter 2018 ,		1
141	Reactive Power Impacts on LCL Filter Capacitor Lifetime and Reliability in DFIG Grid-Connected Inverter 2018 ,		2
140	Thermal Coupling and Network Modeling for Planar Transformers 2018,		2
139	Single-stage Bridgeless Buck-boost PFC Converter with DC Split for Low Power LED applications 2018 ,		2
138	Uncertainties in the Lifetime Prediction of IGBTs for a Motor Drive Application 2018,		2
137	Influence of DC Link Capacitance on Power Efficiency of Single-Phase Inverter 2018,		1

136	Modeling and Optimization of Displacement Windings for Transformers in Dual Active Bridge Converters 2018 ,		4
135	On Power Electronized Power Systems: Challenges and Solutions 2018,		2
134	Thermal resistance modelling and design optimization of PCB vias. <i>Microelectronics Reliability</i> , 2018 , 88-90, 1118-1123	1.2	3
133	An analytical circuit based nonlinear thermal model for capacitor banks. <i>Microelectronics Reliability</i> , 2018 , 88-90, 524-527	1.2	7
132	Two-thermal-states model predictive control for IGBT in three-phase inverter. <i>Microelectronics Reliability</i> , 2018 , 88-90, 1098-1102	1.2	O
131	Thermal stress reduction of quasi-Z source inverter drive by model predictive control. <i>Microelectronics Reliability</i> , 2018 , 88-90, 1247-1250	1.2	3
130	Fundamental frequency region-based thermal control of power electronics modules in high power motor drive. <i>Microelectronics Reliability</i> , 2018 , 88-90, 1242-1246	1.2	0
129	System-level reliability enhancement of DC/DC stage in a single-phase PV inverter. <i>Microelectronics Reliability</i> , 2018 , 88-90, 1030-1035	1.2	10
128	A DC-link Capacitor Voltage Oscillation Reduction Method for a Modular Multilevel Cascade Converter with Single Delta Bridge Cells (MMCC-SDBC) 2018 ,		2
127	Transient Voltage Stress Modeling for Submodules of Modular Multilevel Converters under Grid Voltage Sags 2018 ,		1
126	The Impact of Topology and Mission Profile on the Reliability of Boost-type Converters in PV Applications 2018 ,		14
125	Design for reliability and robustness tool platform for power electronic systems Istudy case on motor drive applications 2018,		11
124	A Two-Terminal Active Capacitor. <i>IEEE Transactions on Power Electronics</i> , 2017 , 32, 5893-5896	7.2	42
123	Energy Saving and Efficient Energy Use By Power Electronic Systems. Lecture Notes in Energy, 2017 , 1-1	40.4	5
122	An AC resistance optimization method applicable for inductor and transformer windings with full layers and partial layers 2017 ,		5
121	Reliability assessment of single-phase grid-connected PV microinverters considering mission profile and uncertainties 2017 ,		1
120	A voltage doubler circuit to extend the soft-switching range of dual active bridge converters 2017,		1
119	A fixed-frequency bidirectional resonant DC-DC converter suitable for wide voltage range 2017 ,		2

118	A reconfigurable series resonant DC-DC converter for wide-input and wide-output voltages 2017,		8
117	A Lifetime Prediction Method for LEDs Considering Real Mission Profiles. <i>IEEE Transactions on Power Electronics</i> , 2017 , 32, 8718-8727	7.2	17
116	Reliability-oriented design of a cost-effective active capacitor 2017 ,		3
115	An active capacitor with self-power and internal feedback control signals 2017,		2
114	A reliability-oriented component sizing procedure for cost benchmarking of capacitive DC-links 2017 ,		1
113	Reactive power compensation capability of a STATCOM based on two types of Modular Multilevel Cascade Converters for offshore wind application 2017 ,		4
112	Degradation effect on reliability evaluation of aluminum electrolytic capacitor in backup power converter 2017 ,		6
111	Artificial Neural Network based DC-link capacitance estimation in a diode-bridge front-end inverter system 2017 ,		7
110	Precharge strategies for isolated modular DC-DC converters under two different start-up conditions 2017 ,		1
109	Reliability oriented design of a grid-connected photovoltaic microinverter 2017,		3
108	A voltage control method for an active capacitive DC-link module with series-connected circuit 2017 ,		4
107	Reliability-Oriented Optimization of the LC Filter in a Buck DC-DC Converter. <i>IEEE Transactions on Power Electronics</i> , 2017 , 32, 6323-6337	7.2	21
106	A new soft-switched high step-up DC-DC converter with dual coupled inductors 2017,		1
105	The impact of mission profile models on the predicted lifetime of IGBT modules in the modular multilevel converter 2017 ,		10
104	An analytical essential switching loss estimation method for modular multilevel converters with nearest level modulation 2017 ,		2
103	A method for hotspot temperature estimation of aluminum electrolytic capacitors 2017,		2
102	Lifetime prediction of LED lighting systems considering thermal coupling between LED sources and drivers 2017 ,		2
101	The impact of grid unbalances on the reliability of DC-link capacitors in a motor drive 2017,		10

100	Impedance characteristics modeling of a two-terminal active capacitor 2017,		3
99	Analysis of indirect rotor field oriented control-based induction machine performance under inaccurate field-oriented condition 2017 ,		1
98	Capacitance estimation algorithm based on DC-link voltage harmonics using artificial neural network in three-phase motor drive systems 2017 ,		9
97	A switched-capacitor based high conversion ratio converter for renewable energy applications: Principle and generation 2017 ,		2
96	Design for reliability in renewable energy systems 2017 ,		5
95	Impact of lifetime model selections on the reliability prediction of IGBT modules in modular multilevel converters 2017 ,		29
94	Capacitance estimation for dc-link capacitors in a back-to-back converter based on Artificial Neural Network algorithm 2016 ,		5
93	Mission profile based sizing of IGBT chip area for PV inverter applications 2016,		8
92	Cost assessment of three power decoupling methods in a single-phase power converter with a reliability-oriented design procedure 2016 ,		6
91	Power control flexibilities for grid-connected multi-functional photovoltaic inverters. <i>IET Renewable Power Generation</i> , 2016 , 10, 504-513	2.9	104
91		2.9	0
	Renewable Power Generation, 2016, 10, 504-513 Reliability evaluation of a single-phase H-bridge inverter with integrated active power decoupling	2.9	
90	Renewable Power Generation, 2016, 10, 504-513 Reliability evaluation of a single-phase H-bridge inverter with integrated active power decoupling 2016,	2.9	0
90 89	Reliability evaluation of a single-phase H-bridge inverter with integrated active power decoupling 2016, Reliability assessment of fuel cell system - A framework for quantitative approach 2016,	2.9	0
90 89 88	Reliability evaluation of a single-phase H-bridge inverter with integrated active power decoupling 2016, Reliability assessment of fuel cell system - A framework for quantitative approach 2016, Analytical model for LLC resonant converter with variable duty-cycle control 2016,	2.9	o 1 5
90 89 88 87	Reliability evaluation of a single-phase H-bridge inverter with integrated active power decoupling 2016, Reliability assessment of fuel cell system - A framework for quantitative approach 2016, Analytical model for LLC resonant converter with variable duty-cycle control 2016, System-level reliability assessment of power stage in fuel cell application 2016, A generic topology derivation method for single-phase converters with active capacitive DC-links	2.9	o 1 5
90 89 88 87 86	Reliability evaluation of a single-phase H-bridge inverter with integrated active power decoupling 2016, Reliability assessment of fuel cell system - A framework for quantitative approach 2016, Analytical model for LLC resonant converter with variable duty-cycle control 2016, System-level reliability assessment of power stage in fuel cell application 2016, A generic topology derivation method for single-phase converters with active capacitive DC-links 2016, Lifetime estimation of electrolytic capacitors in a fuel cell power converter at various confidence	1.5	o 1 5 7 3

82	A new ZVS-PWM current-fed full-bridge converter with full soft-switching load range 2016 ,		2
81	A lifetime prediction method for LEDs considering mission profiles 2016 ,		4
80	Benchmarking of constant power generation strategies for single-phase grid-connected Photovoltaic systems 2016 ,		9
79	A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations. <i>IEEE Transactions on Industry Applications</i> , 2016 , 52, 3306-3314	4.3	50
78	Power cycling test and failure analysis of molded Intelligent Power IGBT Module under different temperature swing durations. <i>Microelectronics Reliability</i> , 2016 , 64, 403-408	1.2	30
77	A Review of the Condition Monitoring of Capacitors in Power Electronic Converters. <i>IEEE Transactions on Industry Applications</i> , 2016 , 52, 4976-4989	4.3	102
76	Real mission profile based lifetime estimation of fuel-cell power converter 2016,		6
75	Degradation testing and failure analysis of DC film capacitors under high humidity conditions. <i>Microelectronics Reliability</i> , 2015 , 55, 2007-2011	1.2	23
74	Prediction of bond wire fatigue of IGBTs in a PV inverter under long-term operation 2015,		3
73	Instantaneous thermal modeling of the DC-link capacitor in PhotoVoltaic systems 2015,		18
72	Harmonics mitigation of dead time effects in PWM converters using a repetitive controller 2015,		21
71	Wide-Scale Adoption of Photovoltaic Energy: Grid Code Modifications Are Explored in the Distribution Grid. <i>IEEE Industry Applications Magazine</i> , 2015 , 21, 21-31	0.6	156
70	Study on Oscillations During Short Circuit of MW-Scale IGBT Power Modules by Means of a 6-kA/1.1-kV Nondestructive Testing System. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2015 , 3, 756-765	5.6	9
69	Condition monitoring for DC-link capacitors based on artificial neural network algorithm 2015,		17
68	Electro-thermal modeling of high power IGBT module short-circuits with experimental validation 2015 ,		9
67	Reliability Oriented Design Tool For the New Generation of Grid Connected PV-Inverters. <i>IEEE Transactions on Power Electronics</i> , 2015 , 30, 2635-2644	7.2	106
66	Frequency Adaptive Selective Harmonic Control for Grid-Connected Inverters. <i>IEEE Transactions on Power Electronics</i> , 2015 , 30, 3912-3924	7.2	103
65	Waveform control method for mitigating harmonics of inverter systems with nonlinear load 2015,		2

(2014-2015)

64	A comprehensive investigation on the short circuit performance of MW-level IGBT power modules 2015 ,		2
63	Reliability Assessment of Transformerless PV Inverters considering Mission Profiles. <i>International Journal of Photoenergy</i> , 2015 , 2015, 1-10	2.1	4
62	Introducing state-trajectory control for the synchronous interleaved boost converter 2015,		3
61	A humidity-dependent lifetime derating factor for DC film capacitors 2015,		19
60	A review of the condition monitoring of capacitors in power electronic converters 2015,		3
59	Comprehensive investigation on current imbalance among parallel chips inside MW-scale IGBT power modules 2015 ,		14
58	Prediction of Bond Wire Fatigue of IGBTs in a PV Inverter Under a Long-Term Operation. <i>IEEE Transactions on Power Electronics</i> , 2015 , 1-1	7.2	78
57	The feasibility study on thermal loading control of wind power converters with a flexible switching frequency 2015 ,		8
56	Reliability of Power Electronic Converter Systems 2015,		39
55	Reduction of DC-link capacitor in case of cascade multilevel converters by means of reactive power control 2014 ,		9
55 54			9
	control 2014 ,	7.2	
54	Constant power generation of photovoltaic systems considering the distributed grid capacity 2014 , A Robust Passive Damping Method for LLCL-Filter-Based Grid-Tied Inverters to Minimize the Effect	7.2 5.6	40
54	Constant power generation of photovoltaic systems considering the distributed grid capacity 2014 , A Robust Passive Damping Method for LLCL-Filter-Based Grid-Tied Inverters to Minimize the Effect of Grid Harmonic Voltages. <i>IEEE Transactions on Power Electronics</i> , 2014 , 29, 3279-3289		40
54 53 52	Constant power generation of photovoltaic systems considering the distributed grid capacity 2014, A Robust Passive Damping Method for LLCL-Filter-Based Grid-Tied Inverters to Minimize the Effect of Grid Harmonic Voltages. IEEE Transactions on Power Electronics, 2014, 29, 3279-3289 . IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2, 97-114 A design tool to study the impact of mission-profile on the reliability of SiC-based PV-inverter	5.6	40 107 433
54 53 52 51	Constant power generation of photovoltaic systems considering the distributed grid capacity 2014, A Robust Passive Damping Method for LLCL-Filter-Based Grid-Tied Inverters to Minimize the Effect of Grid Harmonic Voltages. IEEE Transactions on Power Electronics, 2014, 29, 3279-3289 . IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2, 97-114 A design tool to study the impact of mission-profile on the reliability of SiC-based PV-inverter devices. Microelectronics Reliability, 2014, 54, 1655-1660	5.6	40 107 433 11
54 53 52 51 50	Constant power generation of photovoltaic systems considering the distributed grid capacity 2014, A Robust Passive Damping Method for LLCL-Filter-Based Grid-Tied Inverters to Minimize the Effect of Grid Harmonic Voltages. IEEE Transactions on Power Electronics, 2014, 29, 3279-3289 . IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2, 97-114 A design tool to study the impact of mission-profile on the reliability of SiC-based PV-inverter devices. Microelectronics Reliability, 2014, 54, 1655-1660 . IEEE Transactions on Industry Applications, 2014, 50, 4065-4076 Reduced junction temperature control during low-voltage ride-through for single-phase	5.6 1.2 4·3	40 107 433 11

46	Reactive power injection strategies for single-phase photovoltaic systems considering grid requirements 2014 ,		17
45	Real Field Mission Profile Oriented Design of a SiC-Based PV-Inverter Application. <i>IEEE Transactions on Industry Applications</i> , 2014 , 50, 4082-4089	4.3	35
44	Sizing of the series dynamic breaking resistor in a doubly fed induction generator wind turbine 2014 ,		2
43	Fast and Accurate Icepak-PSpice Co-Simulation of IGBTs under Short-Circuit with an Advanced PSpice Model 2014 ,		2
42	Investigation into the control methods to reduce the DC-link capacitor ripple current in a back-to-back converter 2014 ,		15
41	Improved reliability of single-phase PV inverters by limiting the maximum feed-in power 2014,		12
40	Wide-band gap devices in PV systems - opportunities and challenges 2014,		15
39	Investigation on the short-circuit behavior of an aged IGBT module through a 6 kA/1.1 kV non-destructive testing equipment 2014 ,		4
38	An Icepak-PSpice co-simulation method to study the impact of bond wires fatigue on the current and temperature distribution of IGBT modules under short-circuit 2014 ,		9
37	The impact of gate-driver parameters variation and device degradation in the PV-inverter lifetime 2014 ,		12
36	A temperature-dependent thermal model of IGBT modules suitable for circuit-level simulations 2014 ,		8
35	Mission profile translation to capacitor stresses in grid-connected photovoltaic systems 2014,		13
34	Design for Reliability of Power Electronics in Renewable Energy Systems. <i>Green Energy and Technology</i> , 2014 , 295-338	0.6	3
33	Improving the Effectiveness of Testing Pervasive Software via Context Diversity. <i>ACM Transactions on Autonomous and Adaptive Systems</i> , 2014 , 9, 1-28	1.2	14
32	Use of a Series Voltage Compensator for Reduction of the DC-Link Capacitance in a Capacitor-Supported System. <i>IEEE Transactions on Power Electronics</i> , 2014 , 29, 1163-1175	7.2	139
31	Low-Voltage Ride-Through of Single-Phase Transformerless Photovoltaic Inverters. <i>IEEE Transactions on Industry Applications</i> , 2014 , 50, 1942-1952	4.3	213
30	. IEEE Industrial Electronics Magazine, 2013 , 7, 17-26	6.2	433
29	Reliability-oriented design and analysis of input capacitors in single-phase transformer-less photovoltaic inverters 2013 ,		17

28	A reliability-oriented design method for power electronic converters 2013,		18
27	Comprehensive evaluation on efficiency and thermal loading of associated Si and SiC based PV inverter applications 2013 ,		13
26	A novel electro-thermal model for wide bandgap semiconductor based devices 2013,		14
25	Mission profile based multi-disciplinary analysis of power modules in single-phase transformerless photovoltaic inverters 2013 ,		37
24	Catastrophic failure and fault-tolerant design of IGBT power electronic converters - an overview 2013 ,		92
23	Real field mission profile oriented design of a SiC-based PV-inverter application 2013,		6
22	Low voltage ride-through of single-phase transformerless photovoltaic inverters 2013,		5
21	Overview of catastrophic failures of freewheeling diodes in power electronic circuits. <i>Microelectronics Reliability</i> , 2013 , 53, 1788-1792	1.2	22
20	A hybrid damping method for LLCL-filter based grid-tied inverter with a digital filter and an RC parallel passive damper 2013 ,		5
19	2013,		13
19	2013, Suggested grid code modifications to ensure wide-scale adoption of photovoltaic energy in distributed power generation systems 2013,		13
	Suggested grid code modifications to ensure wide-scale adoption of photovoltaic energy in		
	Suggested grid code modifications to ensure wide-scale adoption of photovoltaic energy in distributed power generation systems 2013 ,		43
18	Suggested grid code modifications to ensure wide-scale adoption of photovoltaic energy in distributed power generation systems 2013, Design for reliability in power electronics in renewable energy systems Latus and future 2013, Stability analysis and dynamic response of a DC-link module with a series voltage compensator		43
18 17 16	Suggested grid code modifications to ensure wide-scale adoption of photovoltaic energy in distributed power generation systems 2013, Design for reliability in power electronics in renewable energy systems Btatus and future 2013, Stability analysis and dynamic response of a DC-link module with a series voltage compensator 2013,		43 15 5
18 17 16	Suggested grid code modifications to ensure wide-scale adoption of photovoltaic energy in distributed power generation systems 2013, Design for reliability in power electronics in renewable energy systems Btatus and future 2013, Stability analysis and dynamic response of a DC-link module with a series voltage compensator 2013, A novel concept to reduce the DC-link capacitor in PFC front-end power conversion systems 2012,	7.2	4315514
18 17 16 15	Suggested grid code modifications to ensure wide-scale adoption of photovoltaic energy in distributed power generation systems 2013, Design for reliability in power electronics in renewable energy systems Batatus and future 2013, Stability analysis and dynamic response of a DC-link module with a series voltage compensator 2013, A novel concept to reduce the DC-link capacitor in PFC front-end power conversion systems 2012, Design for reliability of power electronic systems 2012, A New Concept of High-Voltage DCDC Conversion Using Asymmetric Voltage Distribution on the	7.2	43 15 5 14 127

10	A Class of High-Input Low-Output Voltage Single-Step Converters with Low Voltage Stress on the Primary-Side Switches and High Output Current Capacity. <i>IEEE Transactions on Power Electronics</i> , 2011 , 26, 1659-1672	7.2	17
9	Study of a new technique to reduce the dc-link capacitor in a power electronic system by using a series voltage compensator 2011 ,		9
8	A Uniform Nonlinear Control Method for DC-DC Converters with Fast Transient Response. <i>HKIE Transactions</i> , 2010 , 17, 31-39	2.9	
7	Correlating Context-Awareness and Mutation Analysis for Pervasive Computing Systems 2010,		4
6	A class of single-step high-voltage DC-DC converters with low voltage stress and high output current capacity 2009 ,		2
5	A ZCS Current-Fed Full-Bridge PWM Converter With Self-Adaptable Soft-Switching Snubber Energy. <i>IEEE Transactions on Power Electronics</i> , 2009 , 24, 1977-1991	7.2	56
4	Modeling and Analysis of a Current-Fed ZCS Full-Bridge DC/DC Converter with Adaptive Soft-Switching Energy 2009 ,		4
3	Weaving Context Sensitivity into Test Suite Construction 2009,		11
2	A unified derivation of second-order switching surface for boundary control of DC-DC converters 2009 ,		6
1	. IEEE Transactions on Power Electronics, 2008 , 23, 2630-2647	7.2	26