Tanneke den Blaauwen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4982789/publications.pdf

Version: 2024-02-01

99 papers 5,653 citations

43 h-index 71 g-index

109 all docs 109 docs citations

109 times ranked 3695 citing authors

#	Article	IF	CITATIONS
1	Erratum for Meiresonne et al., "Activity-Related Conformational Changes in d,d -Carboxypeptidases Revealed by In Vivo Periplasmic Förster Resonance Energy Transfer Assay in Escherichia coli― MBio, 2022, , e0357721.	1.8	O
2	An Updated Model of the Divisome: Regulation of the Septal Peptidoglycan Synthesis Machinery by the Divisome. International Journal of Molecular Sciences, 2022, 23, 3537.	1.8	19
3	The Longitudinal Dividing Bacterium Candidatus Thiosymbion Oneisti Has a Natural Temperature-Sensitive FtsZ Protein with Low GTPase Activity. International Journal of Molecular Sciences, 2022, 23, 3016.	1.8	O
4	Early midcell localization of Escherichia coli PBP4 supports the function of peptidoglycan amidases. PLoS Genetics, 2022, 18, e1010222.	1.5	5
5	The Escherichia coli Outer Membrane \hat{l}^2 -Barrel Assembly Machinery (BAM) Anchors the Peptidoglycan Layer by Spanning It with All Subunits. International Journal of Molecular Sciences, 2021, 22, 1853.	1.8	5
6	PBP4 Is Likely Involved in Cell Division of the Longitudinally Dividing Bacterium Candidatus Thiosymbion Oneisti. Antibiotics, 2021, 10, 274.	1.5	3
7	Keeping division on track. Nature Microbiology, 2021, 6, 538-539.	5.9	O
8	ZapG (YhcB/DUF1043), a novel cell division protein in gamma-proteobacteria linking the Z-ring to septal peptidoglycan synthesis. Journal of Biological Chemistry, 2021, 296, 100700.	1.6	9
9	The Escherichia coli Outer Membrane \hat{l}^2 -Barrel Assembly Machinery (BAM) Crosstalks with the Divisome. International Journal of Molecular Sciences, 2021, 22, 12101.	1.8	5
10	The In Vitro Non-Tetramerizing ZapAl83E Mutant Is Unable to Recruit ZapB to the Division Plane In Vivo in Escherichia coli. International Journal of Molecular Sciences, 2020, 21, 3130.	1.8	2
11	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. PLoS Genetics, 2020, 16, e1009276.	1.5	35
12	Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multiâ€enzyme complexes in ⟨i⟩Escherichia coli⟨/i⟩. EMBO Journal, 2020, 39, e102246.	3.5	69
13	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16 , e 1009276 .		O
14	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16 , e 1009276 .		0
15	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16 , e 1009276 .		O
16	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16 , e 1009276 .		0
17	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16, e 1009276 .		O
18	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16 , e 1009276 .		0

#	Article	IF	Citations
19	The Bacterial DNA Binding Protein MatP Involved in Linking the Nucleoid Terminal Domain to the Divisome at Midcell Interacts with Lipid Membranes. MBio, 2019, 10, .	1.8	12
20	Checks and Balances in Bacterial Cell Division. MBio, 2019, 10, .	1.8	21
21	Peptidoglycan Remodeling Enables Escherichia coli To Survive Severe Outer Membrane Assembly Defect. MBio, 2019, 10, .	1.8	115
22	Superfolder mTurquoise2 ^{ox} optimized for the bacterial periplasm allows high efficiency <i>in vivo</i> FRET of cell division antibiotic targets. Molecular Microbiology, 2019, 111, 1025-1038.	1.2	33
23	Update Notice:Detection of in vivo Protein Interactions in All Bacterial Compartments by Förster Resonance Energy Transfer with the Superfolder mTurquoise2 ox-mNeongreen FRET Pair. Bio-protocol, 2019, 9, e3448.	0.2	1
24	Host-Polarized Cell Growth in Animal Symbionts. Current Biology, 2018, 28, 1039-1051.e5.	1.8	37
25	Structural Analysis of the Interaction between the Bacterial Cell Division Proteins FtsQ and FtsB. MBio, 2018, 9, .	1.8	40
26	Mapping the Contact Sites of the Escherichia coli Division-Initiating Proteins FtsZ and ZapA by BAMG Cross-Linking and Site-Directed Mutagenesis. International Journal of Molecular Sciences, 2018, 19, 2928.	1.8	11
27	The Fluorescent D-Amino Acid NADA as a Tool to Study the Conditional Activity of Transpeptidases in Escherichia coli. Frontiers in Microbiology, 2018, 9, 2101.	1.5	26
28	Is Longitudinal Division in Rod-Shaped Bacteria a Matter of Swapping Axis?. Frontiers in Microbiology, 2018, 9, 822.	1.5	8
29	FtsW activity and lipid II synthesis are required for recruitment of MurJ to midcell during cell division in <i>Escherichia coli</i> Molecular Microbiology, 2018, 109, 855-884.	1.2	26
30	Manganese is a Deinococcus radiodurans growth limiting factor in rich culture medium. Microbiology (United Kingdom), 2018, 164, 1266-1275.	0.7	5
31	Detection of Protein Interactions in the Cytoplasm and Periplasm of Escherichia coli by Förster Resonance Energy Transfer. Bio-protocol, 2018, 8, e2697.	0.2	6
32	The divisome at 25: the road ahead. Current Opinion in Microbiology, 2017, 36, 85-94.	2.3	157
33	Activity-Related Conformational Changes in <scp>d,d</scp> -Carboxypeptidases Revealed by <i>In Vivo</i> Periplasmic Förster Resonance Energy Transfer Assay in <i>Escherichia coli</i> MBio, 2017, 8, .	1.8	24
34	Asynchronous division by non-ring FtsZ in the gammaproteobacterial symbiont of Robbea hypermnestra. Nature Microbiology, 2017, 2, 16182.	5.9	21
35	Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and \hat{l}^2 -lactam resistance in Escherichia coli. ELife, 2016, 5, .	2.8	137
36	Validation of FRET Assay for the Screening of Growth Inhibitors of Escherichia coli Reveals Elongasome Assembly Dynamics. International Journal of Molecular Sciences, 2015, 16, 17637-17654.	1.8	26

#	Article	IF	Citations
37	Cell age dependent concentration of Escherichia coli divisome proteins analyzed with ImageJ and ObjectJ. Frontiers in Microbiology, 2015, 6, 586.	1.5	92
38	The Soluble Periplasmic Domains of Escherichia coli Cell Division Proteins FtsQ/FtsB/FtsL Form a Trimeric Complex with Submicromolar Affinity. Journal of Biological Chemistry, 2015, 290, 21498-21509.	1.6	37
39	Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division. ELife, 2015, 4, .	2.8	154
40	Size-independent symmetric division in extraordinarily long cells. Nature Communications, 2014, 5, 4803.	5.8	23
41	Specificity of the Transport of Lipid II by FtsW in Escherichia coli. Journal of Biological Chemistry, 2014, 289, 14707-14718.	1.6	67
42	Bacterial cell division proteins as antibiotic targets. Bioorganic Chemistry, 2014, 55, 27-38.	2.0	69
43	Absence of long-range diffusion of OmpA in E. coliis not caused by its peptidoglycan binding domain. BMC Microbiology, 2013, 13, 66.	1.3	18
44	Prokaryotic cell division: flexible and diverse. Current Opinion in Microbiology, 2013, 16, 738-744.	2.3	23
45	Colocalization and interaction between elongasome and divisome during a preparative cell division phase in <i><scp>E</scp>scherichia coli</i> <. Molecular Microbiology, 2013, 87, 1074-1087.	1.2	103
46	Fine-mapping the Contact Sites of the Escherichia coli Cell Division Proteins FtsB and FtsL on the FtsQ Protein*. Journal of Biological Chemistry, 2013, 288, 24340-24350.	1.6	31
47	Immunolabeling of Proteins in situ in Escherichia coli K12 Strains. Bio-protocol, 2013, 3, .	0.2	23
48	Growth in width and FtsZ ring longitudinal positioning in a gammaproteobacterial symbiont. Current Biology, 2012, 22, R831-R832.	1.8	49
49	Cooperativity of peptidoglycan synthases active in bacterial cell elongation. Molecular Microbiology, 2012, 85, 179-194.	1.2	147
50	Association of Neighboring \hat{l}^2 -Strands of Outer Membrane Protein A in Lipid Bilayers Revealed by Site-Directed Fluorescence Quenching. Journal of Molecular Biology, 2011, 407, 316-332.	2.0	33
51	A Novel in vivo Cellâ€Wall Labeling Approach Sheds New Light on Peptidoglycan Synthesis in <i>Escherichia coli</i> . ChemBioChem, 2011, 12, 1124-1133.	1.3	30
52	The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. Microbiology (United Kingdom), 2011, 157, 251-259.	0.7	103
53	Septal and lateral wall localization of PBP5, the major D,Dâ€carboxypeptidase of <i>Escherichia coli,</i> requires substrate recognition and membrane attachment. Molecular Microbiology, 2010, 77, 300-323.	1.2	82
54	Direct interactions of early and late assembling division proteins in <i>Escherichia coli</i> cells resolved by FRET. Molecular Microbiology, 2010, 77, 384-398.	1,2	92

#	Article	IF	CITATIONS
55	A Conserved Aromatic Residue in the Autochaperone Domain of the Autotransporter Hbp Is Critical for Initiation of Outer Membrane Translocation. Journal of Biological Chemistry, 2010, 285, 38224-38233.	1.6	56
56	Insights into Nucleotide Recognition by Cell Division Protein FtsZ from a <i>mant</i> -GTP Competition Assay and Molecular Dynamics. Biochemistry, 2010, 49, 10458-10472.	1.2	45
57	Regulation of Peptidoglycan Synthesis by Outer-Membrane Proteins. Cell, 2010, 143, 1097-1109.	13.5	335
58	Differential Bacterial Surface Display of Peptides by the Transmembrane Domain of OmpA. PLoS ONE, 2009, 4, e6739.	1.1	30
59	Thermodynamics of the Protein Translocation. Methods in Enzymology, 2009, 466, 273-291.	0.4	1
60	The GTPase Activity of <i>Escherichia coli</i> FtsZ Determines the Magnitude of the FtsZ Polymer Bundling by ZapA <i>in Vitro</i> Biochemistry, 2009, 48, 11056-11066.	1.2	79
61	Probing FtsZ and Tubulin with C8-Substituted GTP Analogs Reveals Differences in Their Nucleotide Binding Sites. Chemistry and Biology, 2008, 15, 189-199.	6.2	74
62	Morphogenesis of rod-shaped sacculi. FEMS Microbiology Reviews, 2008, 32, 321-344.	3.9	270
63	Structural and mutational analysis of the cell division protein FtsQ. Molecular Microbiology, 2008, 68, 110-123.	1,2	62
64	Functional Taxonomy of Bacterial Hyperstructures. Microbiology and Molecular Biology Reviews, 2007, 71, 230-253.	2.9	79
65	Contribution of the FtsQ Transmembrane Segment to Localization to the Cell Division Site. Journal of Bacteriology, 2007, 189, 7273-7280.	1.0	19
66	Toward a Hyperstructure Taxonomy. Annual Review of Microbiology, 2007, 61, 309-329.	2.9	63
67	Limited tolerance towards folded elements during secretion of the autotransporter Hbp. Molecular Microbiology, 2007, 63, 1524-1536.	1,2	105
68	DNA and origin region segregation are not affected by the transition from rod to sphere after inhibition of Escherichia coliMreB by A22. Molecular Microbiology, 2007, 65, 51-63.	1.2	78
69	The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in <i>Escherichia coli</i> Molecular Microbiology, 2007, 65, 1106-1121.	1.2	147
70	Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli. Molecular Microbiology, 2006, 61, 675-690.	1.2	173
71	Preâ€replication assembly ofE. colireplisome components. Molecular Microbiology, 2006, 62, 695-708.	1.2	15
72	Maturation of the Escherichia colidivisome occurs in two steps. Molecular Microbiology, 2005, 55, 1631-1645.	1.2	273

#	Article	IF	Citations
7 3	Characterization of an iron-regulated alpha-enolase of Bacteroides fragilis. Microbes and Infection, 2005, 7, 9-18.	1.0	26
74	Conformational State of the SecYEG-Bound SecA Probed by Single Tryptophan Fluorescence Spectroscopyâ€. Biochemistry, 2005, 44, 6424-6432.	1.2	17
7 5	GTP Analogue Inhibits Polymerization and GTPase Activity of the Bacterial Protein FtsZ without Affecting Its Eukaryotic Homologue Tubulinâ€. Biochemistry, 2005, 44, 7879-7884.	1.2	71
76	Structural Determinants Required To Target Penicillin-Binding Protein 3 to the Septum of Escherichia coli. Journal of Bacteriology, 2004, 186, 6110-6117.	1.0	48
77	Functional Analysis of the Cell Division Protein FtsW of Escherichia coli. Journal of Bacteriology, 2004, 186, 8370-8379.	1.0	64
78	R174 of Escherichia coli FtsZ is involved in membrane interaction and protofilament bundling, and is essential for cell division. Molecular Microbiology, 2003, 51, 645-657.	1.2	78
79	Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole. Molecular Microbiology, 2003, 47, 539-547.	1.2	127
80	GTP Hydrolysis of Cell Division Protein FtsZ:  Evidence that the Active Site Is Formed by the Association of Monomers. Biochemistry, 2002, 41, 521-529.	1.2	144
81	Distribution of the Escherichia coli structural maintenance of chromosomes (SMC)-like protein MukB in the cell. Molecular Microbiology, 2002, 42, 1179-1188.	1.2	34
82	Substitution of a conserved aspartate allows cation-induced polymerization of FtsZ. FEBS Letters, 2001, 494, 34-37.	1.3	28
83	Escherichia coli Minicell Membranes Are Enriched in Cardiolipin. Journal of Bacteriology, 2001, 183, 6144-6147.	1.0	116
84	Non-hydrolysable GTP-gamma-S stabilizes the FtsZ polymer in a GDP-bound state. Molecular Microbiology, 2000, 35, 1211-1219.	1.2	51
85	Thermodynamics of nucleotide binding to NBS-I of theBacillus subtilispreprotein translocase subunit SecA. FEBS Letters, 1999, 458, 145-150.	1.3	26
86	Outer Membrane Protein A of Escherichia coli Inserts and Folds into Lipid Bilayers by a Concerted Mechanism. Biochemistry, 1999, 38, 5006-5016.	1.2	139
87	Timing of FtsZ Assembly in <i>Escherichia coli</i> . Journal of Bacteriology, 1999, 181, 5167-5175.	1.0	179
88	Dimerization of a His117Gly Azurin Mutant by External Addition of 1,ω-Di(imidazol-1-yl)alkanes. Biochemistry, 1998, 37, 7656-7656.	1.2	2
89	Inhibition of Preprotein Translocation and Reversion of the Membrane Inserted State of SecA by a Carboxyl Terminus Binding MAb. Biochemistry, 1997, 36, 9159-9168.	1.2	14
90	Crystal structures of modified apo-His117Gly and apo-His46Gly mutants of Pseudomonas aeruginosa azurin a aEdited by I. A. Wilson. Journal of Molecular Biology, 1997, 266, 357-365.	2.0	22

#	Article	IF	CITATIONS
91	Interaction of SecB with soluble SecA1. FEBS Letters, 1997, 416, 35-38.	1.3	49
92	Domain Interactions of the Peripheral PreproteinTranslocaseSubunit SecAâ€. Biochemistry, 1996, 35, 11994-12004.	1.2	81
93	Dimerization of a His117Gly Azurin Mutant by External Addition of 1,ï‰-Di(imidazol-1-yl)alkanes. Biochemistry, 1996, 35, 13205-13211.	1.2	10
94	The role of His117 in the redox reactions of azurin from Pseudomonas aeruginosa. FEBS Letters, 1996, 381, 140-142.	1.3	22
95	Sec-dependent preprotein translocation in bacteria. Archives of Microbiology, 1996, 165, 1-8.	1.0	52
96	SecA is an intrinsic subunit of the Escherichia coli preprotein translocase and exposes its carboxyl terminus to the periplasm. Molecular Microbiology, 1996, 22, 619-629.	1.2	97
97	Identification of the Magnesium-binding Domain of the High-affinity ATP-binding Site of the Bacillus subtilis and Escherichia coli SecA Protein. Journal of Biological Chemistry, 1995, 270, 18975-18982.	1.6	43
98	Diffusion-Limited Interaction between Unfolded Polypeptides and the Escherichia coli Chaperone SecB. Biochemistry, 1995, 34, 10078-10085.	1.2	75
99	Resonance Raman spectroscopy of the azurin His $117\mathrm{Gly}$ mutant. Interconversion of type 1 and type 2 copper sites through exogenous ligands. Biochemistry, 1993 , 32 , 12455 - 12464 .	1.2	74