
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4982789/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of Peptidoglycan Synthesis by Outer-Membrane Proteins. Cell, 2010, 143, 1097-1109.	13.5	335
2	Maturation of theEscherichia colidivisome occurs in two steps. Molecular Microbiology, 2005, 55, 1631-1645.	1.2	273
3	Morphogenesis of rod-shaped sacculi. FEMS Microbiology Reviews, 2008, 32, 321-344.	3.9	270
4	Timing of FtsZ Assembly in <i>Escherichia coli</i> . Journal of Bacteriology, 1999, 181, 5167-5175.	1.0	179
5	Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli. Molecular Microbiology, 2006, 61, 675-690.	1.2	173
6	The divisome at 25: the road ahead. Current Opinion in Microbiology, 2017, 36, 85-94.	2.3	157
7	Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division. ELife, 2015, 4, .	2.8	154
8	The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in <i>Escherichia coli</i> . Molecular Microbiology, 2007, 65, 1106-1121.	1.2	147
9	Cooperativity of peptidoglycan synthases active in bacterial cell elongation. Molecular Microbiology, 2012, 85, 179-194.	1.2	147
10	GTP Hydrolysis of Cell Division Protein FtsZ:  Evidence that the Active Site Is Formed by the Association of Monomers. Biochemistry, 2002, 41, 521-529.	1.2	144
11	Outer Membrane Protein A of Escherichia coli Inserts and Folds into Lipid Bilayers by a Concerted Mechanism. Biochemistry, 1999, 38, 5006-5016.	1.2	139
12	Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and β-lactam resistance in Escherichia coli. ELife, 2016, 5, .	2.8	137
13	Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole. Molecular Microbiology, 2003, 47, 539-547.	1.2	127
14	Escherichia coli Minicell Membranes Are Enriched in Cardiolipin. Journal of Bacteriology, 2001, 183, 6144-6147.	1.0	116
15	Peptidoglycan Remodeling Enables Escherichia coli To Survive Severe Outer Membrane Assembly Defect. MBio, 2019, 10, .	1.8	115
16	Limited tolerance towards folded elements during secretion of the autotransporter Hbp. Molecular Microbiology, 2007, 63, 1524-1536.	1.2	105
17	The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. Microbiology (United Kingdom), 2011, 157, 251-259.	0.7	103
18	Colocalization and interaction between elongasome and divisome during a preparative cell division phase in <i><scp>E</scp>scherichia coli</i> . Molecular Microbiology, 2013, 87, 1074-1087.	1.2	103

#	Article	IF	CITATIONS
19	SecA is an intrinsic subunit of the Escherichia coli preprotein translocase and exposes its carboxyl terminus to the periplasm. Molecular Microbiology, 1996, 22, 619-629.	1.2	97
20	Direct interactions of early and late assembling division proteins in <i>Escherichia coli</i> cells resolved by FRET. Molecular Microbiology, 2010, 77, 384-398.	1.2	92
21	Cell age dependent concentration of Escherichia coli divisome proteins analyzed with ImageJ and ObjectJ. Frontiers in Microbiology, 2015, 6, 586.	1.5	92
22	Septal and lateral wall localization of PBP5, the major D,Dâ€carboxypeptidase of <i>Escherichia coli,</i> requires substrate recognition and membrane attachment. Molecular Microbiology, 2010, 77, 300-323.	1.2	82
23	Domain Interactions of the Peripheral PreproteinTranslocaseSubunit SecAâ€. Biochemistry, 1996, 35, 11994-12004.	1.2	81
24	Functional Taxonomy of Bacterial Hyperstructures. Microbiology and Molecular Biology Reviews, 2007, 71, 230-253.	2.9	79
25	The GTPase Activity of <i>Escherichia coli</i> FtsZ Determines the Magnitude of the FtsZ Polymer Bundling by ZapA <i>in Vitro</i> . Biochemistry, 2009, 48, 11056-11066.	1.2	79
26	R174 of Escherichia coli FtsZ is involved in membrane interaction and protofilament bundling, and is essential for cell division. Molecular Microbiology, 2003, 51, 645-657.	1.2	78
27	DNA and origin region segregation are not affected by the transition from rod to sphere after inhibition ofEscherichia coliMreB by A22. Molecular Microbiology, 2007, 65, 51-63.	1.2	78
28	Diffusion-Limited Interaction between Unfolded Polypeptides and the Escherichia coli Chaperone SecB. Biochemistry, 1995, 34, 10078-10085.	1.2	75
29	Resonance Raman spectroscopy of the azurin His117Gly mutant. Interconversion of type 1 and type 2 copper sites through exogenous ligands. Biochemistry, 1993, 32, 12455-12464.	1.2	74
30	Probing FtsZ and Tubulin with C8-Substituted GTP Analogs Reveals Differences in Their Nucleotide Binding Sites. Chemistry and Biology, 2008, 15, 189-199.	6.2	74
31	GTP Analogue Inhibits Polymerization and GTPase Activity of the Bacterial Protein FtsZ without Affecting Its Eukaryotic Homologue Tubulinâ€. Biochemistry, 2005, 44, 7879-7884.	1.2	71
32	Bacterial cell division proteins as antibiotic targets. Bioorganic Chemistry, 2014, 55, 27-38.	2.0	69
33	Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multiâ€enzyme complexes in <i>Escherichia coli</i> . EMBO Journal, 2020, 39, e102246.	3.5	69
34	Specificity of the Transport of Lipid II by FtsW in Escherichia coli. Journal of Biological Chemistry, 2014, 289, 14707-14718.	1.6	67
35	Functional Analysis of the Cell Division Protein FtsW of Escherichia coli. Journal of Bacteriology, 2004, 186, 8370-8379.	1.0	64
36	Toward a Hyperstructure Taxonomy. Annual Review of Microbiology, 2007, 61, 309-329.	2.9	63

#	Article	IF	CITATIONS
37	Structural and mutational analysis of the cell division protein FtsQ. Molecular Microbiology, 2008, 68, 110-123.	1.2	62
38	A Conserved Aromatic Residue in the Autochaperone Domain of the Autotransporter Hbp Is Critical for Initiation of Outer Membrane Translocation. Journal of Biological Chemistry, 2010, 285, 38224-38233.	1.6	56
39	Sec-dependent preprotein translocation in bacteria. Archives of Microbiology, 1996, 165, 1-8.	1.0	52
40	Non-hydrolysable GTP-gamma-S stabilizes the FtsZ polymer in a GDP-bound state. Molecular Microbiology, 2000, 35, 1211-1219.	1.2	51
41	Interaction of SecB with soluble SecA1. FEBS Letters, 1997, 416, 35-38.	1.3	49
42	Growth in width and FtsZ ring longitudinal positioning in a gammaproteobacterial symbiont. Current Biology, 2012, 22, R831-R832.	1.8	49
43	Structural Determinants Required To Target Penicillin-Binding Protein 3 to the Septum of Escherichia coli. Journal of Bacteriology, 2004, 186, 6110-6117.	1.0	48
44	Insights into Nucleotide Recognition by Cell Division Protein FtsZ from a <i>mant</i> -GTP Competition Assay and Molecular Dynamics. Biochemistry, 2010, 49, 10458-10472.	1.2	45
45	Identification of the Magnesium-binding Domain of the High-affinity ATP-binding Site of the Bacillus subtilis and Escherichia coli SecA Protein. Journal of Biological Chemistry, 1995, 270, 18975-18982.	1.6	43
46	Structural Analysis of the Interaction between the Bacterial Cell Division Proteins FtsQ and FtsB. MBio, 2018, 9, .	1.8	40
47	The Soluble Periplasmic Domains of Escherichia coli Cell Division Proteins FtsQ/FtsB/FtsL Form a Trimeric Complex with Submicromolar Affinity. Journal of Biological Chemistry, 2015, 290, 21498-21509.	1.6	37
48	Host-Polarized Cell Growth in Animal Symbionts. Current Biology, 2018, 28, 1039-1051.e5.	1.8	37
49	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. PLoS Genetics, 2020, 16, e1009276.	1.5	35
50	Distribution of the Escherichia coli structural maintenance of chromosomes (SMC)-like protein MukB in the cell. Molecular Microbiology, 2002, 42, 1179-1188.	1.2	34
51	Association of Neighboring β-Strands of Outer Membrane Protein A in Lipid Bilayers Revealed by Site-Directed Fluorescence Quenching. Journal of Molecular Biology, 2011, 407, 316-332.	2.0	33
52	Superfolder mTurquoise2 ^{ox} optimized for the bacterial periplasm allows high efficiency <i>in vivo</i> FRET of cell division antibiotic targets. Molecular Microbiology, 2019, 111, 1025-1038.	1.2	33
53	Fine-mapping the Contact Sites of the Escherichia coli Cell Division Proteins FtsB and FtsL on the FtsQ Protein*. Journal of Biological Chemistry, 2013, 288, 24340-24350.	1.6	31
54	Differential Bacterial Surface Display of Peptides by the Transmembrane Domain of OmpA. PLoS ONE, 2009, 4, e6739.	1.1	30

#	Article	IF	CITATIONS
55	A Novel in vivo Cellâ€Wall Labeling Approach Sheds New Light on Peptidoglycan Synthesis in <i>Escherichia coli</i> . ChemBioChem, 2011, 12, 1124-1133.	1.3	30
56	Substitution of a conserved aspartate allows cation-induced polymerization of FtsZ. FEBS Letters, 2001, 494, 34-37.	1.3	28
57	Thermodynamics of nucleotide binding to NBS-I of theBacillus subtilispreprotein translocase subunit SecA. FEBS Letters, 1999, 458, 145-150.	1.3	26
58	Characterization of an iron-regulated alpha-enolase of Bacteroides fragilis. Microbes and Infection, 2005, 7, 9-18.	1.0	26
59	Validation of FRET Assay for the Screening of Growth Inhibitors of Escherichia coli Reveals Elongasome Assembly Dynamics. International Journal of Molecular Sciences, 2015, 16, 17637-17654.	1.8	26
60	The Fluorescent D-Amino Acid NADA as a Tool to Study the Conditional Activity of Transpeptidases in Escherichia coli. Frontiers in Microbiology, 2018, 9, 2101.	1.5	26
61	FtsW activity and lipid II synthesis are required for recruitment of MurJ to midcell during cell division in <i>Escherichia coli</i> . Molecular Microbiology, 2018, 109, 855-884.	1.2	26
62	Activity-Related Conformational Changes in <scp>d,d</scp> -Carboxypeptidases Revealed by <i>In Vivo</i> Periplasmic Förster Resonance Energy Transfer Assay in <i>Escherichia coli</i> . MBio, 2017, 8, .	1.8	24
63	Prokaryotic cell division: flexible and diverse. Current Opinion in Microbiology, 2013, 16, 738-744.	2.3	23
64	Size-independent symmetric division in extraordinarily long cells. Nature Communications, 2014, 5, 4803.	5.8	23
65	Immunolabeling of Proteins in situ in Escherichia coli K12 Strains. Bio-protocol, 2013, 3, .	0.2	23
66	The role of His117 in the redox reactions of azurin from Pseudomonas aeruginosa. FEBS Letters, 1996, 381, 140-142.	1.3	22
67	Crystal structures of modified apo-His117Gly and apo-His46Gly mutants of Pseudomonas aeruginosa azurin a aEdited by I. A. Wilson. Journal of Molecular Biology, 1997, 266, 357-365.	2.0	22
68	Asynchronous division by non-ring FtsZ in the gammaproteobacterial symbiont of Robbea hypermnestra. Nature Microbiology, 2017, 2, 16182.	5.9	21
69	Checks and Balances in Bacterial Cell Division. MBio, 2019, 10, .	1.8	21
70	Contribution of the FtsQ Transmembrane Segment to Localization to the Cell Division Site. Journal of Bacteriology, 2007, 189, 7273-7280.	1.0	19
71	An Updated Model of the Divisome: Regulation of the Septal Peptidoglycan Synthesis Machinery by the Divisome. International Journal of Molecular Sciences, 2022, 23, 3537.	1.8	19
72	Absence of long-range diffusion of OmpA in E. coliis not caused by its peptidoglycan binding domain. BMC Microbiology, 2013, 13, 66.	1.3	18

#	Article	IF	CITATIONS
73	Conformational State of the SecYEG-Bound SecA Probed by Single Tryptophan Fluorescence Spectroscopyâ€. Biochemistry, 2005, 44, 6424-6432.	1.2	17
74	Preâ€replication assembly ofE. colireplisome components. Molecular Microbiology, 2006, 62, 695-708.	1.2	15
75	Inhibition of Preprotein Translocation and Reversion of the Membrane Inserted State of SecA by a Carboxyl Terminus Binding MAb. Biochemistry, 1997, 36, 9159-9168.	1.2	14
76	The Bacterial DNA Binding Protein MatP Involved in Linking the Nucleoid Terminal Domain to the Divisome at Midcell Interacts with Lipid Membranes. MBio, 2019, 10, .	1.8	12
77	Mapping the Contact Sites of the Escherichia coli Division-Initiating Proteins FtsZ and ZapA by BAMG Cross-Linking and Site-Directed Mutagenesis. International Journal of Molecular Sciences, 2018, 19, 2928.	1.8	11
78	Dimerization of a His117Gly Azurin Mutant by External Addition of 1,ï‰-Di(imidazol-1-yl)alkanes. Biochemistry, 1996, 35, 13205-13211.	1.2	10
79	ZapG (YhcB/DUF1043), a novel cell division protein in gamma-proteobacteria linking the Z-ring to septal peptidoglycan synthesis. Journal of Biological Chemistry, 2021, 296, 100700.	1.6	9
80	ls Longitudinal Division in Rod-Shaped Bacteria a Matter of Swapping Axis?. Frontiers in Microbiology, 2018, 9, 822.	1.5	8
81	Detection of Protein Interactions in the Cytoplasm and Periplasm of Escherichia coli by Förster Resonance Energy Transfer. Bio-protocol, 2018, 8, e2697.	0.2	6
82	The Escherichia coli Outer Membrane β-Barrel Assembly Machinery (BAM) Anchors the Peptidoglycan Layer by Spanning It with All Subunits. International Journal of Molecular Sciences, 2021, 22, 1853.	1.8	5
83	Manganese is a Deinococcus radiodurans growth limiting factor in rich culture medium. Microbiology (United Kingdom), 2018, 164, 1266-1275.	0.7	5
84	The Escherichia coli Outer Membrane β-Barrel Assembly Machinery (BAM) Crosstalks with the Divisome. International Journal of Molecular Sciences, 2021, 22, 12101.	1.8	5
85	Early midcell localization of Escherichia coli PBP4 supports the function of peptidoglycan amidases. PLoS Genetics, 2022, 18, e1010222.	1.5	5
86	PBP4 Is Likely Involved in Cell Division of the Longitudinally Dividing Bacterium Candidatus Thiosymbion Oneisti. Antibiotics, 2021, 10, 274.	1.5	3
87	Dimerization of a His117Gly Azurin Mutant by External Addition of 1,ï‰-Di(imidazol-1-yl)alkanes. Biochemistry, 1998, 37, 7656-7656.	1.2	2
88	The In Vitro Non-Tetramerizing ZapAI83E Mutant Is Unable to Recruit ZapB to the Division Plane In Vivo in Escherichia coli. International Journal of Molecular Sciences, 2020, 21, 3130.	1.8	2
89	Thermodynamics of the Protein Translocation. Methods in Enzymology, 2009, 466, 273-291.	0.4	1
90	Update Notice:Detection of in vivo Protein Interactions in All Bacterial Compartments by Förster Resonance Energy Transfer with the Superfolder mTurquoise2 ox-mNeongreen FRET Pair. Bio-protocol, 2019, 9, e3448.	0.2	1

#	Article	IF	CITATIONS
91	Keeping division on track. Nature Microbiology, 2021, 6, 538-539.	5.9	0
92	Erratum for Meiresonne et al., "Activity-Related Conformational Changes in d,d -Carboxypeptidases Revealed by In Vivo Periplasmic Förster Resonance Energy Transfer Assay in Escherichia coli― MBio, 2022, , e0357721.	1.8	0
93	The Longitudinal Dividing Bacterium Candidatus Thiosymbion Oneisti Has a Natural Temperature-Sensitive FtsZ Protein with Low GTPase Activity. International Journal of Molecular Sciences, 2022, 23, 3016.	1.8	0
94	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16, e1009276.		0
95	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16, e1009276.		0
96	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16, e1009276.		0
97	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16, e1009276.		0
98	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16, e1009276.		0
99	MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. , 2020, 16, e1009276.		0