Li Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4981884/publications.pdf

Version: 2024-02-01

205	29,418	68 h-index	170
papers	citations		g-index
207	207	207	29247
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano, 2013, 7, 2898-2926.	7.3	4,062
2	Thermal Transport Measurements of Individual Multiwalled Nanotubes. Physical Review Letters, 2001, 87, 215502.	2.9	2,853
3	Two-Dimensional Phonon Transport in Supported Graphene. Science, 2010, 328, 213-216.	6.0	1,692
4	Thermal conductivity of individual silicon nanowires. Applied Physics Letters, 2003, 83, 2934-2936.	1.5	1,536
5	Emerging challenges and materials for thermal management of electronics. Materials Today, 2014, 17, 163-174.	8.3	1,359
6	Nanoscale thermal transport. II. 2003–2012. Applied Physics Reviews, 2014, 1, 011305.	5 . 5	1,277
7	Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition. Nano Letters, 2010, 10, 1645-1651.	4.5	1,103
8	Janus Monolayer Transition-Metal Dichalcogenides. ACS Nano, 2017, 11, 8192-8198.	7.3	1,001
9	Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube. Nano Letters, 2005, 5, 1842-1846.	4.5	795
10	Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device. Journal of Heat Transfer, 2003, 125, 881-888.	1.2	698
11	Thermal Conductivity and Phonon Transport in Suspended Few-Layer Hexagonal Boron Nitride. Nano Letters, 2013, 13, 550-554.	4.5	585
12	Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy and Environmental Science, 2014, 7, 1185-1192.	15.6	489
13	Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments. ACS Nano, 2011, 5, 321-328.	7.3	474
14	Activating Inert Basal Planes of MoS ₂ for Hydrogen Evolution Reaction through the Formation of Different Intrinsic Defects. Chemistry of Materials, 2016, 28, 4390-4396.	3.2	388
15	Ultrathin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes. Nano Letters, 2012, 12, 2446-2451.	4.5	382
16	Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17247-17252.	3.3	352
17	Nanoscale design to enable the revolution in renewable energy. Energy and Environmental Science, 2009, 2, 559.	15.6	348
18	High thermal conductivity of chain-oriented amorphous polythiophene. Nature Nanotechnology, 2014, 9, 384-390.	15.6	327

#	Article	IF	Citations
19	Thermal Transport in Three-Dimensional Foam Architectures of Few-Layer Graphene and Ultrathin Graphite. Nano Letters, 2012, 12, 2959-2964.	4.5	314
20	Unusual high thermal conductivity in boron arsenide bulk crystals. Science, 2018, 361, 582-585.	6.0	300
21	Continuous Carbon Nanotube–Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials. ACS Nano, 2015, 9, 11699-11707.	7.3	283
22	Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opinion on Drug Delivery, 2010, 7, 479-495.	2.4	263
23	Influence of Polymeric Residue on the Thermal Conductivity of Suspended Bilayer Graphene. Nano Letters, 2011, 11, 1195-1200.	4.5	255
24	Searching for Highly Active Catalysts for Hydrogen Evolution Reaction Based on O-Terminated MXenes through a Simple Descriptor. Chemistry of Materials, 2016, 28, 9026-9032.	3.2	247
25	Managing heat for electronics. Materials Today, 2005, 8, 30-35.	8.3	227
26	Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. Journal of Controlled Release, 2008, 125, 263-272.	4.8	218
27	Thermal Transport Mechanisms at Nanoscale Point Contacts. Journal of Heat Transfer, 2002, 124, 329-337.	1.2	203
28	Thermoelectric properties of individual electrodeposited bismuth telluride nanowires. Applied Physics Letters, 2005, 87, 133109.	1.5	202
29	Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science, 2020, 367, 555-559.	6.0	177
30	Significant Electronic Thermal Transport in the Conducting Polymer Poly(3,4â€ethylenedioxythiophene). Advanced Materials, 2015, 27, 2101-2106.	11.1	176
31	Thermal and Structural Characterizations of Individual Singleâ€, Doubleâ€, and Multiâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2009, 19, 3918-3925.	7.8	169
32	Thermal transport in graphene. Solid State Communications, 2012, 152, 1321-1330.	0.9	165
33	Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber. Journal of Heat Transfer, 2006, 128, 234-239.	1.2	161
34	Profiling the Thermoelectric Power of Semiconductor Junctions with Nanometer Resolution. Science, 2004, 303, 816-818.	6.0	159
35	Phonon backscattering and thermal conductivity suppression in sawtooth nanowires. Applied Physics Letters, 2008, 93, .	1.5	159
36	Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. Journal of Materials Chemistry A, 2019, 7, 4291-4312.	5.2	158

#	Article	IF	CITATIONS
37	Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes. Applied Physics Letters, 2000, 77, 4295-4297.	1.5	156
38	Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires. Journal of Applied Physics, 2009, 105, .	1.1	151
39	Basal-plane thermal conductivity of few-layer molybdenum disulfide. Applied Physics Letters, 2014, 104, 201902.	1.5	142
40	Phonon-interface scattering in multilayer graphene on an amorphous support. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16321-16326.	3.3	141
41	A three-dimensional dielectrophoretic particle focusing channel for microcytometry applications. Journal of Microelectromechanical Systems, 2005, 14, 480-487.	1.7	135
42	Determination of Transport Properties in Chromium Disilicide Nanowires via Combined Thermoelectric and Structural Characterizations. Nano Letters, 2007, 7, 1649-1654.	4.5	131
43	Effects of Surface Band Bending and Scattering on Thermoelectric Transport in Suspended Bismuth Telluride Nanoplates. Nano Letters, 2013, 13, 5316-5322.	4.5	129
44	Integration of metal oxide nanobelts with microsystems for nerve agent detection. Applied Physics Letters, 2005, 86, 063101.	1.5	127
45	Thermal conductivities of individual tin dioxide nanobelts. Applied Physics Letters, 2004, 84, 2638-2640.	1.5	123
46	Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes. Solid State Communications, 2003, 127, 181-186.	0.9	122
47	Mesoscopic thermal transport and energy dissipation in carbon nanotubes. Physica B: Condensed Matter, 2002, 323, 67-70.	1.3	118
48	Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit. International Journal of Heat and Mass Transfer, 2015, 82, 273-281.	2.5	114
49	Thermal and Thermoelectric Transport in Nanostructures and Low-Dimensional Systems. Nanoscale and Microscale Thermophysical Engineering, 2012, 16, 79-116.	1.4	113
50	Effect of Shape, Size, and Aspect Ratio on Nanoparticle Penetration and Distribution inside Solid Tissues Using 3D Spheroid Models. Advanced Healthcare Materials, 2015, 4, 2269-2280.	3.9	111
51	Four-probe measurements of the in-plane thermoelectric properties of nanofilms. Review of Scientific Instruments, 2007, 78, 034901.	0.6	106
52	Design and batch fabrication of probes for sub-100 nm scanning thermal microscopy. Journal of Microelectromechanical Systems, 2001, 10, 370-378.	1.7	101
53	Temperature and Thickness Dependences of the Anisotropic Inâ€Plane Thermal Conductivity of Black Phosphorus. Advanced Materials, 2017, 29, 1603756.	11.1	99
54	Thermal probing of energy dissipation in current-carrying carbon nanotubes. Journal of Applied Physics, 2009, 105, .	1.1	97

#	Article	IF	CITATIONS
55	Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases. Physical Review B, $2011,83,\ldots$	1.1	96
56	Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Research, 2015, 8, 666-672.	5.8	95
57	Magnetic field-induced helical mode and topological transitions in a topological insulator nanoribbon. Nature Nanotechnology, 2016, 11, 345-351.	15.6	93
58	Optical measurement of thermal transport in suspended carbon nanotubes. Applied Physics Letters, 2008, 92, .	1.5	91
59	A eutectic mixture of galactitol and mannitol as a phase change material for latent heat storage. Energy Conversion and Management, 2015, 103, 139-146.	4.4	85
60	Comparison study of catalyst nanoparticle formation and carbon nanotube growth: Support effect. Journal of Applied Physics, 2007, 101, 124310.	1.1	83
61	Measurement and analysis of thermopower and electrical conductivity of an indium antimonide nanowire from a vapor-liquid-solid method. Journal of Applied Physics, 2007, 101, 023706.	1.1	81
62	Template-Grown MoS ₂ Nanowires Catalyze the Hydrogen Evolution Reaction: Ultralow Kinetic Barriers with High Active Site Density. ACS Catalysis, 2017, 7, 5097-5102.	5.5	78
63	In-plane thermal conductivity of disordered layered WSe2 and (W)x(WSe2)y superlattice films. Applied Physics Letters, 2007, 91, .	1.5	77
64	Thermal conductivity suppression in bismuth nanowires. Journal of Applied Physics, 2009, 106, .	1.1	77
65	Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction. Applied Physics Letters, 2014, 104, .	1.5	76
66	Twisting phonons in complex crystals with quasi-one-dimensional substructures. Nature Communications, 2015, 6, 6723.	5.8	75
67	Approaching the Minimum Thermal Conductivity in Rheniumâ€Substituted Higher Manganese Silicides. Advanced Energy Materials, 2014, 4, 1400452.	10.2	74
68	Optical Absorption and Thermal Transport of Individual Suspended Carbon Nanotube Bundles. Nano Letters, 2009, 9, 590-594.	4.5	72
69	Evaluating Broader Impacts of Nanoscale Thermal Transport Research. Nanoscale and Microscale Thermophysical Engineering, 2015, 19, 127-165.	1.4	69
70	Gate-tunable and thickness-dependent electronic and thermoelectric transport in few-layer MoS2. Journal of Applied Physics, 2016, 120, .	1.1	66
71	Low-Frequency Acoustic Phonon Temperature Distribution in Electrically Biased Graphene. Nano Letters, 2011, 11, 85-90.	4.5	63
72	Optical Generation and Detection of Local Nonequilibrium Phonons in Suspended Graphene. Nano Letters, 2017, 17, 2049-2056.	4.5	60

#	Article	IF	CITATIONS
73	Unique size and shape-dependent uptake behaviors of non-spherical nanoparticles by endothelial cells due to a shearing flow. Journal of Controlled Release, 2017, 245, 170-176.	4.8	57
74	Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure. Applied Physics Letters, 2016, 108, .	1.5	53
75	Direct observation of heat dissipation in individual suspended carbon nanotubes using a two-laser technique. Journal of Applied Physics, $2011,110,$	1.1	52
76	Suppressing the bipolar contribution to the thermoelectric properties of Mg2Si0.4Sn0.6 by Ge substitution. Journal of Applied Physics, 2015, 117, .	1.1	51
77	Effect of growth base pressure on the thermoelectric properties of indium antimonide nanowires. Journal Physics D: Applied Physics, 2010, 43, 025406.	1.3	50
78	Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides. Journal of Alloys and Compounds, 2015, 641, 30-36.	2.8	50
79	Swelling behavior of nanoscale, shape- and size-specific, hydrogel particles fabricated using imprint lithography. Soft Matter, 2011, 7, 2879.	1.2	49
80	Effects of (Al,Ge) double doping on the thermoelectric properties of higher manganese silicides. Journal of Applied Physics, 2013, 114, 173705.	1.1	49
81	On errors in thermal conductivity measurements of suspended and supported nanowires using micro-thermometer devices from low to high temperatures. Measurement Science and Technology, 2011, 22, 015103.	1.4	48
82	Thermoelectric Properties of Undoped High Purity Higher Manganese Silicides Grown by Chemical Vapor Transport. Chemistry of Materials, 2014, 26, 5097-5104.	3.2	48
83	Gate Tunable Relativistic Mass and Berry's phase in Topological Insulator Nanoribbon Field Effect Devices. Scientific Reports, 2015, 5, 8452.	1.6	48
84	Magnons and Phonons Optically Driven out of Local Equilibrium in a Magnetic Insulator. Physical Review Letters, 2016, 117, 107202.	2.9	45
85	Enhanced thermoelectric power factor of Re-substituted higher manganese silicides with small islands of MnSi secondary phase. Journal of Materials Chemistry C, 2015, 3, 10500-10508.	2.7	44
86	Scanning Thermal Wave Microscopy (STWM). Journal of Heat Transfer, 2003, 125, 156-163.	1.2	43
87	The effect of gas environment on electrical heating in suspended carbon nanotubes. Journal of Applied Physics, 2010, 108, .	1.1	41
88	Reexamination of basal plane thermal conductivity of suspended graphene samples measured by electro-thermal micro-bridge methods. AIP Advances, 2015, 5, .	0.6	40
89	Thermal Characterization and Sensor Applications of One-Dimensional Nanostructures Employing Microelectromechanical Systems. Journal of Physical Chemistry B, 2005, 109, 22102-22111.	1.2	39
90	High fidelity finite difference model for exploring multi-parameter thermoelectric generator design space. Applied Energy, 2014, 129, 373-383.	5.1	39

#	Article	IF	Citations
91	In-plane thermal and thermoelectric properties of misfit-layered [(PbSe)0.99]x(WSe2)x superlattice thin films. Applied Physics Letters, 2010, 96, .	1.5	38
92	Molecular dynamics simulation of thermal transport at a nanometer scale constriction in silicon. Journal of Applied Physics, 2007, 101, 074304.	1.1	37
93	Model of Heat Exchangers for Waste Heat Recovery from Diesel Engine Exhaust for Thermoelectric Power Generation. Journal of Electronic Materials, 2012, 41, 1290-1297.	1.0	37
94	Reexamination of thermal transport measurements of a low-thermal conductance nanowire with a suspended micro-device. Review of Scientific Instruments, 2013, 84, 084903.	0.6	37
95	Effect of illumination and Se vacancies on fast oxidation of ultrathin gallium selenide. Nanoscale, 2018, 10, 12180-12186.	2.8	37
96	A comprehensive study of thermoelectric and transport properties of \hat{l}^2 -silicon carbide nanowires. Journal of Applied Physics, 2013, 114, .	1.1	36
97	Enhanced thermoelectric cooling at cold junction interfaces. Applied Physics Letters, 2002, 80, 3006-3008.	1.5	34
98	A four-probe thermal transport measurement method for nanostructures. Review of Scientific Instruments, 2015, 86, 044901.	0.6	34
99	Scalable Imprinting of Shape-Specific Polymeric Nanocarriers Using a Release Layer of Switchable Water Solubility. ACS Nano, 2012, 6, 2524-2531.	7. 3	33
100	Large Reduction of Hot Spot Temperature in Graphene Electronic Devices with Heat-Spreading Hexagonal Boron Nitride. ACS Applied Materials & Interfaces, 2018, 10, 11101-11107.	4.0	33
101	Thermal conductivity of carbon nanotubes grown by catalyst-free chemical vapor deposition in nanopores. Carbon, 2019, 145, 195-200.	5.4	33
102	Thermal Conductivity Measurement of Graphene Exfoliated on Silicon Dioxide. Journal of Heat Transfer, 2011, 133, .	1.2	32
103	Synthesis and Properties of Turbostratically Disordered, Ultrathin WSe ₂ Films. Chemistry of Materials, 2010, 22, 2750-2756.	3.2	30
104	RECENT DEVELOPMENTS IN MICRO AND NANOSCALE THERMOMETRY. Microscale Thermophysical Engineering, 2001, 5, 251-265.	1.2	28
105	Effect of supporting layer on growth of carbon nanotubes by thermal chemical vapor deposition. Applied Physics Letters, 2006, 89, 183113.	1.5	27
106	Thermoelectric Properties of Cold-Pressed Higher Manganese Silicides for Waste Heat Recovery. Journal of Electronic Materials, 2012, 41, 1564-1572.	1.0	27
107	Thermodynamic model of a thermal storage air conditioning system with dynamic behavior. Applied Energy, 2013, 112, 160-169.	5.1	27
108	A Reexamination of Phonon Transport Through a Nanoscale Point Contact in Vacuum. Journal of Heat Transfer, 2014, 136, .	1.2	26

#	Article	IF	Citations
109	One-dimensional electron transport and thermopower in an individual InSb nanowire. Journal of Physics Condensed Matter, 2006, 18, 9651-9657.	0.7	25
110	Cross-Plane Seebeck Coefficient Measurement of Misfit Layered Compounds (SnSe) $<$ sub $<$ i>	4.5	25
111	Thermal Expansion Coefficient and Lattice Anharmonicity of Cubic Boron Arsenide. Physical Review Applied, 2019, 11, .	1.5	23
112	THERMAL TRANSPORT MEASUREMENT TECHNIQUES FOR NANOWIRES AND NANOTUBES. Annual Review of Heat Transfer, 2013, 16, 101-134.	0.3	23
113	Three-dimensional modeling of nanoscale Seebeck measurements by scanning thermoelectric microscopy. Applied Physics Letters, 2005, 87, 053115.	1.5	22
114	Brillouin light scattering spectra as local temperature sensors for thermal magnons and acoustic phonons. Applied Physics Letters, 2013, 102, 082401.	1.5	22
115	Thermoelectric transport in surface- and antimony-doped bismuth telluride nanoplates. APL Materials, 2016, 4, 104810.	2.2	22
116	Thermal stability of Mg ₂ Si _{0.4} Sn _{0.6} in inert gases and atomic-layer-deposited Al ₂ O ₃ thin film as a protective coating. Journal of Materials Chemistry A, 2016, 4, 17726-17731.	5.2	21
117	Thermal Conductivity Measurements of Nylon 11-Carbon Nanofiber Nanocomposites. Journal of Heat Transfer, 2009, 131, .	1.2	19
118	Effects of Impurities on the Thermal and Electrical Transport Properties of Cubic Boron Arsenide. Chemistry of Materials, 2021, 33, 6974-6982.	3.2	19
119	Transient Hydrodynamic Lattice Cooling by Picosecond Laser Irradiation of Graphite. Physical Review Letters, 2021, 127, 085901.	2.9	19
120	Raman Linewidth Contributions from Four-Phonon and Electron-Phonon Interactions in Graphene. Physical Review Letters, 2022, 128, 045901.	2.9	19
121	Cross-plane Thermoelectric and Thermionic Transport across Au/h-BN/Graphene Heterostructures. Scientific Reports, 2017, 7, 14148.	1.6	18
122	Enhanced specific surface area and thermal conductivity in ultrathin graphite foams grown by chemical vapor deposition on sintered nickel powder templates. Carbon, 2018, 136, 380-386.	5.4	18
123	Multimillimeter-sized cubic boron arsenide grown by chemical vapor transport via a tellurium tetraiodide transport agent. Applied Physics Letters, 2018, 112, 261901.	1.5	18
124	Pressureâ€Dependent Behavior of Defectâ€Modulated Band Structure in Boron Arsenide. Advanced Materials, 2020, 32, e2001942.	11.1	18
125	Thermal conductivity of ZnTe nanowires. Journal of Applied Physics, 2013, 114, .	1.1	17
126	lodine doping effects on the lattice thermal conductivity of oxidized polyacetylene nanofibers. Journal of Applied Physics, 2013, 114, 194302.	1.1	17

#	Article	IF	CITATIONS
127	Quantitative scanning thermal microscopy of graphene devices on flexible polyimide substrates. Journal of Applied Physics, 2016, 119, .	1.1	17
128	Effects of basal-plane thermal conductivity and interface thermal conductance on the hot spot temperature in graphene electronic devices. Applied Physics Letters, 2017, 110, 073104.	1.5	17
129	Scattering of phonons by high-concentration isotopic impurities in ultrathin graphite. Physical Review B, 2015, 91, .	1.1	16
130	Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon. Applied Physics Letters, 2015, 106, .	1.5	16
131	Temperature-dependent Brillouin light scattering spectra of magnons in yttrium iron garnet and permalloy. Physical Review B, 2017, 96, .	1.1	16
132	Enhanced thermoelectric efficiency in topological insulator Bi2Te3 nanoplates via atomic layer deposition-based surface passivation. Applied Physics Letters, 2018, 113, .	1.5	16
133	Controlled formation and resistivity scaling of nickel silicide nanolines. Nanotechnology, 2009, 20, 085304.	1.3	15
134	Thermal resistance of a nanoscale point contact to an indium arsenide nanowire. Applied Physics Letters, 2011, 99, 063110.	1.5	15
135	compound <mml:math xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">S<mml:msub><mml:mi mathvariant="normal">r<mml:mn>14</mml:mn></mml:mi </mml:msub><mml:mi mathvariant="normal">C<mml:msub><mml:mi< td=""><td>1.1</td><td>14</td></mml:mi<></mml:msub></mml:mi </mml:mi </mml:mrow></mml:math>	1.1	14
136	mathvariant="normal">u <mmkmi>24</mmkmi> ub> <mmkmi mathvaria Nonresistive heat transport by collective phonon flow. Science, 2019, 364, 332-333.</mmkmi 	6.0	14
137	Enhanced Cross-Plane Thermoelectric Transport of Rotationally Disordered SnSe2 via Se-Vapor Annealing. Nano Letters, 2018, 18, 6876-6881.	4.5	13
138	Mean Free Path Suppression of Low-Frequency Phonons in SiGe Nanowires. Nano Letters, 2020, 20, 8384-8391.	4.5	12
139	Numerical Optimization and Power Output Control of a Hot Thermal Battery with Phase Change Material. Numerical Heat Transfer; Part A: Applications, 2014, 65, 825-843.	1.2	11
140	Micro- and Nanoscale Measurement Methods for Phase Change Heat Transfer on Planar and Structured Surfaces. Nanoscale and Microscale Thermophysical Engineering, 2014, 18, 270-287.	1.4	11
141	Basal-plane thermal conductivity of nanocrystalline and amorphized thin germanane. Applied Physics Letters, 2016, 109, 131907.	1.5	11
142	Comparison of four-probe thermal and thermoelectric transport measurements of thin films and nanostructures with microfabricated electro-thermal transducers. Journal Physics D: Applied Physics, 2018, 51, 103002.	1.3	11
143	Pure Spin Current and Magnon Chemical Potential in a Nonequilibrium Magnetic Insulator. Physical Review X, 2020, 10, .	2.8	11
144	Simulation of a plasmonic tip-terminated scanning nanowire waveguide for molecular imaging. Applied Physics Letters, 2008, 93, 193101.	1.5	10

#	Article	IF	Citations
145	Effects of grain boundaries and defects on anisotropic magnon transport in textured Sr14Cu24O41. Physical Review B, 2017, 95, .	1.1	10
146	Glass-like thermal conductivity in nanostructures of a complex anisotropic crystal. Physical Review B, 2017, 96, .	1.1	10
147	Phonon interaction with ripples and defects in thin layered molybdenum disulfide. Applied Physics Letters, $2019,114,.$	1.5	10
148	Synthesis and thermal transport properties of high-surface area hexagonal boron nitride foam structures. International Journal of Heat and Mass Transfer, 2020, 161, 120268.	2.5	10
149	Micro-Nano Scale Thermal Imaging Using Scanning Probe Microscopy. Nanoscience and Technology, 2004, , 327-362.	1.5	10
150	Localized Mg-vacancy states in the thermoelectric material Mg2â^' <i>δ</i> Si0.4Sn0.6. Journal of Applied Physics, 2016, 119, .	1.1	9
151	Coupling of Spinons with Defects and Phonons in the Spin Chain Compound <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	:mn3.9 <td>nl:Msub><m< td=""></m<></td>	nl:Msub> <m< td=""></m<>
152	Thermal and Thermoelectric Measurements of Low Dimensional Nanostructures., 2003,, 77.		8
153	Size-Dependent Nanoparticle Margination and Adhesion Propensity in a Microchannel. Journal of Nanotechnology in Engineering and Medicine, 2013, 4, .	0.8	8
154	Synthesis and Magnon Thermal Transport Properties of Spin Ladder Sr 14 Cu 24 O 41 Microstructures. Advanced Functional Materials, 2020, 30, 2001637.	7.8	7
155	Reexamination of hydrodynamic phonon transport in thin graphite. Journal of Applied Physics, 2022, 131, .	1.1	7
156	Phonon Transport and Thermoelectricity in Defect-Engineered InAs Nanowires. Materials Research Society Symposia Proceedings, 2012, 1404, 36.	0.1	6
157	Enhanced Low-Temperature Thermoelectric Performance in (PbSe) < sub>1+δ (VSe < sub>2) < sub>1 < /sub> Heterostructures due to Highly Correlated Electrons in Charge Density Waves. Nano Letters, 2020, 20, 8008-8014.	4.5	6
158	Quantitative thermal probing of devices at sub-100 nm resolution., 0,,.		5
159	Monte Carlo Simulation of Phonon Backscattering in a Nanowire. , 2006, , 549.		5
160	Comment on "Length-dependant thermal conductivity of an individual single-wall carbon nanotube― [Appl. Phys. Lett. 91, 123119 (2007)]. Applied Physics Letters, 2008, 92, 206103.	1.5	5
161	Combined Thermoelectric and Structure Characterizations of Patterned Nanowires. , 2006, , .		4
162	Scalable Fabrication of Low Elastic Modulus Polymeric Nanocarriers With Controlled Shapes for Diagnostics and Drug Delivery. Journal of Micro and Nano-Manufacturing, 2015, 3, .	0.8	4

#	Article	IF	CITATIONS
163	Electronic structure of cubic boron arsenide probed by scanning tunneling spectroscopy. Journal Physics D: Applied Physics, 2021, 54, 31LT01.	1.3	4
164	Scanning Thermal and Thermoelectric Microscopy. , 2005, , 183-205.		3
165	A microsphere coupler for a nanowire waveguide plasmonic probe for molecular imaging. Nanotechnology, 2011, 22, 045203.	1.3	3
166	A differential thin film resistance thermometry method for peak thermal conductivity measurements of high thermal conductivity crystals. Review of Scientific Instruments, 2021, 92, 094901.	0.6	3
167	Molecular Dynamics Simulation of Thermal Transport at Nanometer Size Point Contacts on a Planar Silicon Substrate., 2005,, 389.		2
168	Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber., 2005, , 197.		2
169	Thermal Transport Measurements of Bilayer and Few-Layer Graphene Supported on Silicon Dioxide. , 2011, , .		2
170	The Effect of Nanoparticle Size on Margination and Adhesion Propensity in Artificial Micro-Capillaries. , 2012, , .		2
171	Size-Dependent Nanoparticle Uptake by Endothelial Cells in a Capillary Flow System. Journal of Nanotechnology in Engineering and Medicine, 2015, 6, .	0.8	2
172	Thermoelectric measurements of high-resistance Janus monolayer transition-metal dichalcogenide. Review of Scientific Instruments, 2019, 90, 105110.	0.6	2
173	Four-Probe Measurement of Thermal Transport in Suspended Few-Layer Graphene With Polymer Residue. Journal of Heat Transfer, 2019, 141, .	1.2	2
174	Peak thermal conductivity measurements of boron arsenide crystals. Physical Review Materials, 2022, 6, .	0.9	2
175	Integration of metal-oxide nanobelts with microsystems for sensor applications. , 2004, , .		1
176	Measurements of Thermoelectric Properties of Bismuth Telluride Nanowires. , 2005, , .		1
177	Measurement of thermoelectric properties of individual bismuth telluride nanowires. , 2005, , .		1
178	Characterization of Heat Propagation along Single Tin Dioxide Nanobelt Using the Thermoreflectance Method. Materials Research Society Symposia Proceedings, 2007, 1022, 1.	0.1	1
179	Report on 6th U.S.–Japan Joint Seminar on Nanoscale Transport Phenomena—Science and Engineering. Nanoscale and Microscale Thermophysical Engineering, 2008, 12, 273-293.	1.4	1
180	Thermal Conductivity Measurement of Graphene Exfoliated on Silicon Dioxide., 2010,,.		1

#	Article	IF	CITATIONS
181	Report on the Seventh U.S.–Japan Joint Seminar on Nanoscale Transport Phenomena—Science and Engineering. Nanoscale and Microscale Thermophysical Engineering, 2013, 17, 25-49.	1.4	1
182	Development of an Analytical Design Tool for Monolithic Emission Control Catalysts and Application to Nano-Textured Substrate System. Journal of Thermal Science and Engineering Applications, 2014, 6, .	0.8	1
183	In-plane Thermoelectric Properties of Epitaxial InGaAlAs Films embedded with ErAs Nanoparticles. , 2008, , .		1
184	Thermoelectric mapping of p-n junctions and superlattices. , 0, , .		0
185	Nanoscale Thermal and Thermoelectric Mapping of Semiconductor Devices and Interconnects. AIP Conference Proceedings, 2003, , .	0.3	0
186	Theoretical analysis of SnO/sub 2/ nanobelt thermal conductivity. , 0, , .		0
187	A Micro-Flow Cytometer Based on Dielectrophoretic Particle Focusing. , 2003, , 545.		О
188	Scanning Probe Microscopy of Carbon Nanotube Electronic Devices. , 2004, , 87.		0
189	Scanning thermal microscopy of carbon nanotube electronic devices. , 0, , .		O
190	Support Controlled Catalytic Chemical Vapor Deposition of Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2007, 1017, 7.	0.1	0
191	Simulation of Electromagnetic Field Distribution at a Nanowire Probe for Near Field Scanning Optical Microscopy. , 2008, , .		O
192	Thermal Conductance of Individual Single-Wall Carbon Nanotubes. , 2008, , .		0
193	Simulation of Charge Density and Field Distribution of a Gold Nanoparticle Tip-Terminated Scanning Nanowire Waveguide for Molecular Imaging. , 2009, , .		0
194	Carbon Nanotubes: (Thermal and Structural Characterizations of Individual Single-, Double-, and) Tj ETQq0 0 0 rgE	3T /Overlo	ck 10 Tf 50 2 O
195	Thermal Conductivity of One-Dimensional Silicon-Germanium Alloy Nanowires. , 2009, , .		0
196	Thermoreflectance imaging measurement of in-plane thermal properties of thin-film structures. , 2010, , .		0
197	Experimental Investigation of Thermal Transport Mechanisms Through a Nanoscale Point Contact., 2011,,.		0
198	Thermal Conductivity Measurement of Individual Polythiophene Nanofibers With Suspended Micro-Resistance Thermometer Devices. , 2012, , .		0

#	Article	IF	Citations
199	Topological surface state transport and current saturation in topological insulator nanoribbons field effect transistors. , 2014, , .		0
200	Thermal and Thermoelectric Characterization of Individual Nanostructures and Thin Films. , 2017, , 410-434.		0
201	Structural and Synthetic Modification of Graphitic Foams and Dendritic Graphitic Foams for Thermal Management. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100576.	0.8	0
202	Nano-Imprint Patterning of Nanowire Structures for Interconnect Study., 2005,,.		0
203	Synthesis and Thermoelectric Measurement of Individual Bismuth Nanowires., 2006,,.		0
204	Bio-MEMS Devices in Cell Manipulation. , 2006, , 237-262.		0
205	Scanning Thermal Microscopy. , 2016, , 3521-3530.		0