
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4981382/publications.pdf Version: 2024-02-01

ΙΔΥ ΚΑΝΙΔΥΔΝ

#	Article	IF	CITATIONS
1	Digital fabrication of eco-friendly ultra-high performance fiber-reinforced concrete. Cement and Concrete Composites, 2022, 125, 104281.	4.6	34
2	Expansive cementitious materials to improve micro-cable reinforcement bond in 3D concrete printing. Cement and Concrete Composites, 2022, 125, 104304.	4.6	14
3	Short-duration near-nozzle mixing for 3D concrete printing. Cement and Concrete Research, 2022, 151, 106616.	4.6	17
4	Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application. Journal of Cleaner Production, 2022, 334, 130270.	4.6	98
5	Waste Clay Brick Binders for Rigid Pavement Subbase and Base Concretes. Lecture Notes in Civil Engineering, 2022, , 903-917.	0.3	4
6	Enhancing the chemical foaming process using superplasticizer in aerated geopolymer concrete. Construction and Building Materials, 2022, 324, 126535.	3.2	18
7	Set on demand geopolymer using print head mixing for 3D concrete printing. Cement and Concrete Composites, 2022, 128, 104451.	4.6	24
8	Properties of additively manufactured geopolymer incorporating mineral wollastonite microfibers. Construction and Building Materials, 2022, 331, 127282.	3.2	18
9	Synthesis and performance of intumescent alkali-activated rice husk ash for fire-resistant applications. Journal of Building Engineering, 2022, 51, 104281.	1.6	5
10	Lap Joint Reinforcement for 3D Concrete Printing. Journal of Structural Engineering, 2022, 148, .	1.7	8
11	Study of particle packing and paste rheology in alkali activated mixtures to meet the rheology demands of 3D Concrete Printing. Cement and Concrete Composites, 2022, 131, 104581.	4.6	16
12	Waste Clay Bricks as a Geopolymer Binder for Pavement Construction. Sustainability, 2022, 14, 6456.	1.6	14
13	Effect of steel slag on 3D concrete printing of geopolymer with quaternary binders. Ceramics International, 2022, 48, 26233-26247.	2.3	17
14	In-line activation of cementitious materials for 3D concrete printing. Cement and Concrete Composites, 2022, 131, 104598.	4.6	15
15	Experimental investigation of the impact of design and control parameters of water-based active phase change materials system on thermal energy storage. Energy and Buildings, 2022, 268, 112226.	3.1	3
16	Effects of Cement Mortar Characteristics on Aggregate-Bed 3D Concrete Printing. Additive Manufacturing, 2022, , 103024.	1.7	1
17	Effect of fly ash and slag on properties of normal and high strength concrete including fracture energy by wedge splitting test: Experimental and numerical investigations. Construction and Building Materials, 2021, 271, 121553.	3.2	19
18	Progress, current thinking and challenges in geopolymer foam concrete technology. Cement and Concrete Composites, 2021, 116, 103886.	4.6	109

#	Article	IF	CITATIONS
19	Vibration induced active rheology control for 3D concrete printing. Cement and Concrete Research, 2021, 140, 106293.	4.6	52
20	Influence of recycled concrete aggregate on the foam stability of aerated geopolymer concrete. Construction and Building Materials, 2021, 271, 121850.	3.2	36
21	Evaluation of alkalinity changes and carbonation of geopolymer concrete exposed to wetting and drying. Journal of Building Engineering, 2021, 35, 102029.	1.6	18
22	Effect of alkali reactions on the rheology of one-part 3D printable geopolymer concrete. Cement and Concrete Composites, 2021, 116, 103899.	4.6	95
23	Comparison of Rheology Measurement Techniques Used in 3D Concrete Printing Applications. Lecture Notes in Civil Engineering, 2021, , 261-273.	0.3	6
24	Pathways to Commercialisation for Brown Coal Fly Ash-Based Geopolymer Concrete in Australia. Sustainability, 2021, 13, 4350.	1.6	8
25	Durability performance of fly ash-based geopolymer concrete buried in saline environment for 10Âyears. Construction and Building Materials, 2021, 281, 122596.	3.2	35
26	Integrating reinforcement in digital fabrication with concrete: A review and classification framework. Cement and Concrete Composites, 2021, 119, 103964.	4.6	101
27	Fiber orientation effects on ultra-high performance concrete formed by 3D printing. Cement and Concrete Research, 2021, 143, 106384.	4.6	113
28	Reinforcement method for 3D concrete printing using paste-coated bar penetrations. Automation in Construction, 2021, 127, 103694.	4.8	23
29	3D printing eco-friendly concrete containing under-utilised and waste solids as aggregates. Cement and Concrete Composites, 2021, 120, 104037.	4.6	105
30	The effect of chloride ingress in reinforced geopolymer concrete exposed in the marine environment. Journal of Building Engineering, 2021, 39, 102281.	1.6	24
31	Extrusion rheometer for 3D concrete printing. Cement and Concrete Composites, 2021, 121, 104075.	4.6	30
32	Synthesis and properties of thermally enhanced aerated geopolymer concrete using form-stable phase change composite. Journal of Building Engineering, 2021, 40, 102756.	1.6	17
33	An experimental investigation on the flexural and wear properties of multiscale nanoclay/basalt fiber/epoxy composites. Polymer Composites, 2021, 42, 5755-5762.	2.3	8
34	Ambient temperature cured â€just-add-water' geopolymer for 3D concrete printing applications. Cement and Concrete Composites, 2021, 121, 104060.	4.6	72
35	Collapse of fresh foam concrete: Mechanisms and influencing parameters. Cement and Concrete Composites, 2021, 122, 104151.	4.6	33
36	Retrofitting Building Envelope Using Phase Change Materials and Aerogel Render for Adaptation to Extreme Heatwave: A Multi-Objective Analysis Considering Heat Stress, Energy, Environment, and Cost. Sustainability, 2021, 13, 10716.	1.6	15

#	Article	IF	CITATIONS
37	Technologies for improving buildability in 3D concrete printing. Cement and Concrete Composites, 2021, 122, 104144.	4.6	79
38	Pore gradation effect on Portland cement and geopolymer concretes. Cement and Concrete Composites, 2021, 122, 104141.	4.6	11
39	Formulating eco-friendly geopolymer foam concrete by alkali-activation of ground brick waste. Journal of Cleaner Production, 2021, 325, 129180.	4.6	52
40	Concrete 3D printing of lightweight elements using hollow-core extrusion of filaments. Cement and Concrete Composites, 2021, 123, 104220.	4.6	32
41	Investigation of waste clay brick as partial replacement of geopolymer binders for rigid pavement application. Construction and Building Materials, 2021, 305, 124787.	3.2	33
42	Microstructural characterization of 3D printed concrete. Journal of Building Engineering, 2021, 44, 102948.	1.6	31
43	Energy and Carbon Emission. , 2021, , 75-92.		Ο
44	Resilience and Adaptation in Buildings. , 2021, , 145-166.		0
45	Mesh reinforcing method for 3D Concrete Printing. Automation in Construction, 2020, 109, 102992.	4.8	161
46	Life-cycle cost analysis of building wall and insulation materials. Journal of Building Physics, 2020, 43, 428-455.	1.2	34
47	Yield stress criteria to assess the buildability of 3D concrete printing. Construction and Building Materials, 2020, 240, 117989.	3.2	132
48	Properties of one-part geopolymer incorporating wollastonite as partial replacement of geopolymer precursor or sand. Materials Letters, 2020, 263, 127236.	1.3	25
49	Dimensional accuracy, flowability, wettability, and porosity in inkjet 3DP for gypsum and cement mortar materials. Automation in Construction, 2020, 110, 102964.	4.8	54
50	Bond properties of reinforcing bar penetrations in 3D concrete printing. Automation in Construction, 2020, 120, 103394.	4.8	55
51	Enhancing the mechanical and thermal properties of aerated geopolymer concrete using porous lightweight aggregates. Construction and Building Materials, 2020, 264, 120713.	3.2	48
52	Effect of yield stress development on the foam-stability of aerated geopolymer concrete. Cement and Concrete Research, 2020, 138, 106233.	4.6	79
53	Comparative analysis of building insulation material properties and performance. Renewable and Sustainable Energy Reviews, 2020, 131, 110038.	8.2	180
54	Aggregate-bed 3D concrete printing with cement paste binder. Cement and Concrete Research, 2020, 136, 106169.	4.6	60

#	Article	IF	CITATIONS
55	Strength and ductility enhancement of 3D printing structure reinforced by embedding continuous micro-cables. Construction and Building Materials, 2020, 264, 120196.	3.2	31
56	Insulation failure of lightweight composite sandwich panels exposed to flame. Fire and Materials, 2020, 44, 943-952.	0.9	3
57	Effect of microwave heating on interlayer bonding and buildability of geopolymer 3D concrete printing. Construction and Building Materials, 2020, 265, 120786.	3.2	86
58	Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Construction and Building Materials, 2020, 257, 119546.	3.2	167
59	Self-cementation solidification of heavy metals in lead-zinc smelting slag through alkali-activated materials. Construction and Building Materials, 2020, 249, 118756.	3.2	53
60	Steel fibres reinforced 3D printed concrete: Influence of fibre sizes on mechanical performance. Construction and Building Materials, 2020, 250, 118785.	3.2	130
61	Properties of 3D-Printable Ductile Fibre-Reinforced Geopolymer Composite for Digital Construction Applications. RILEM Bookseries, 2020, , 363-372.	0.2	9
62	Characterizing Extrudability for 3D Concrete Printing Using Discrete Element Simulations. RILEM Bookseries, 2020, , 290-300.	0.2	8
63	Penetration Reinforcing Method for 3D Concrete Printing. RILEM Bookseries, 2020, , 680-690.	0.2	10
64	Post-processing Techniques to Enhance Strength of Portland Cement Mortar Digitally Fabricated Using Powder-Based 3D Printing Process. RILEM Bookseries, 2020, , 457-464.	0.2	4
65	Enhancing Strength of Powder-Based 3D Printed Geopolymers for Digital Construction Applications. RILEM Bookseries, 2020, , 417-425.	0.2	2
66	Nutritional Evaluation of Insect's Pupae-Larvae and its Utilization in Poultry Compound Feed. Open Civil Engineering Journal, 2020, 14, 1-8.	0.4	6
67	Quantitative Evaluation of Orientation of Steel Fibers in 3D-Printed Ultra-High Performance Concrete. RILEM Bookseries, 2020, , 389-397.	0.2	1
68	Impact of Particle Size and Grading on Aggregate-Bed 3D Concrete Printing. RILEM Bookseries, 2020, , 557-563.	0.2	1
69	Mechanical Properties Evaluation of Functionally Layered Cement Composites. Open Civil Engineering Journal, 2020, 14, 1-9.	0.4	1
70	Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction. Materials and Design, 2019, 181, 108088.	3.3	157
71	Post-processing Methods to Improve Strength of Particle-Bed 3D Printed Geopolymer for Digital Construction Applications. Frontiers in Materials, 2019, 6, .	1.2	21
72	Solidification/stabilization of municipal solid waste incineration fly ash using uncalcined coal gangue–based alkali-activated cementitious materials. Environmental Science and Pollution Research, 2019, 26, 25609-25620.	2.7	53

#	Article	IF	CITATIONS
73	Properties of high-calcium and low-calcium fly ash combination geopolymer mortar containing recycled aggregate. Heliyon, 2019, 5, e02513.	1.4	61
74	Direct shear test for the assessment of rheological parameters of concrete for 3D printing applications. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	1.3	66
75	Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Construction and Building Materials, 2019, 202, 770-783.	3.2	278
76	The use of machine learning in boron-based geopolymers: Function approximation of compressive strength by ANN and GP. Measurement: Journal of the International Measurement Confederation, 2019, 141, 241-249.	2.5	24
77	Performance of NSM FRP embedded in concrete under monotonic and fatigue loads: state-of-the-art review. Australian Journal of Structural Engineering, 2019, 20, 89-114.	0.4	9
78	Stress-strain relationship of cement mortar under triaxial compression. Construction and Building Materials, 2019, 220, 456-463.	3.2	27
79	Mechanical properties and durability of unconfined and confined geopolymer concrete with fiber reinforced polymers exposed to sulfuric acid. Construction and Building Materials, 2019, 215, 1015-1032.	3.2	58
80	Experimental Research on Using Form-stable PCM-Integrated Cementitious Composite for Reducing Overheating in Buildings. Buildings, 2019, 9, 57.	1.4	21
81	Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification. Materials and Design, 2019, 169, 107684.	3.3	143
82	A state-of-the-art review: Near-surface mounted FRP composites for reinforced concrete structures. Construction and Building Materials, 2019, 209, 748-769.	3.2	76
83	Method of Optimisation for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications. Materials, 2019, 12, 902.	1.3	80
84	Balancing Energy Efficiency and Heat Wave Resilience in Building Design. , 2019, , 329-349.		1
85	3D Concrete Printing for Construction Applications. , 2019, , 1-11.		40
86	Interlayer Strength of 3D Printed Concrete. , 2019, , 241-264.		31
87	Alkaline fused phosphate mine tailings for geopolymer mortar synthesis: Thermal stability, mechanical and microstructural properties. Journal of Non-Crystalline Solids, 2019, 511, 76-85.	1.5	94
88	Energy saving performance assessment and lessons learned from the operation of an active phase change materials system in a multi-storey building in Melbourne. Applied Energy, 2019, 238, 1582-1595.	5.1	53
89	Printability, accuracy and strength of geopolymer made using powder-based 3D printing for construction applications. Automation in Construction, 2019, 101, 179-189.	4.8	120
90	Thermal Performance of Hollow-Core Slab Ventilation System with Macro-Encapsulated Phase-Change Materials in Supply Air Duct. Buildings, 2019, 9, 51.	1.4	2

#	Article	IF	CITATIONS
91	Development of Powder-Based 3D Concrete Printing Using Geopolymers. , 2019, , 223-240.		5
92	A Comparative Study of Void Distribution Pattern on the Strength Development between OPC-Based and Geopolymer Concrete. Advances in Materials Science and Engineering, 2019, 2019, 1-7.	1.0	4
93	Efficiency of Different Superplasticizers and Retarders on Properties of â€~One-Part' Fly Ash-Slag Blended Geopolymers with Different Activators. Materials, 2019, 12, 3410.	1.3	44
94	Fresh and Hardened Properties of 3D Printable Geopolymer Cured in Ambient Temperature. RILEM Bookseries, 2019, , 3-11.	0.2	18
95	Method of Enhancing Interlayer Bond Strength in 3D Concrete Printing. RILEM Bookseries, 2019, , 148-156.	0.2	10
96	Compressive Strength and Dimensional Accuracy of Portland Cement Mortar Made Using Powder-Based 3D Printing for Construction Applications. RILEM Bookseries, 2019, , 245-254.	0.2	10
97	Hardened Properties of 3D Printable â€~One-Part' Geopolymer for Construction Applications. RILEM Bookseries, 2019, , 190-199.	0.2	13
98	Effects of various carbon additives on the thermal storage performance of form-stable PCM integrated cementitious composites. Applied Thermal Engineering, 2019, 148, 491-501.	3.0	50
99	A comparison of the effects of pozzolanic binders on the hardened-state properties of high-strength cementitious composites reinforced with waste tire fibers. Composites Part B: Engineering, 2019, 162, 134-153.	5.9	30
100	Behavior of fly ash geopolymer as fire resistant coating for timber. Journal of Sustainable Cement-Based Materials, 2019, 8, 259-274.	1.7	18
101	Prediction of the mean grain size of MA-synthesized nanopowders by artificial neural networks. Neural Computing and Applications, 2019, 31, 723-732.	3.2	1
102	Mechanical Properties of Cement-Based Materials and Effect of Elevated Temperature on 3-D Printed Mortar Specimens in Inkjet 3-D Printing. ACI Materials Journal, 2019, 116, .	0.3	8
103	Use of data mining in the corrosion classification of pipelines in Naphtha Hydro-Threating Unit (NHT). Pipeline Science and Technology, 2019, 3, 14-21.	0.4	3
104	Strength evaluation by using polycarboxylate superplasticizer and solidification efficiency of Cr 6+ , Pb 2+ and Cd 2+ in composite based geopolymer. Journal of Cleaner Production, 2018, 188, 807-815.	4.6	71
105	Effect of surface moisture on inter-layer strength of 3D printed concrete. Construction and Building Materials, 2018, 172, 468-475.	3.2	356
106	Microstructural study of environmentally friendly boroaluminosilicate geopolymers. Journal of Cleaner Production, 2018, 189, 805-812.	4.6	33
107	Development of a high strength fly ash-based geopolymer in short time by using microwave curing. Ceramics International, 2018, 44, 8216-8222.	2.3	71
108	A mixed methods design for building occupants' energy behavior research. Energy and Buildings, 2018, 166, 239-249.	3.1	42

#	Article	IF	CITATIONS
109	Durability Performance of Precast Fly Ash–Based Geopolymer Concrete under Atmospheric Exposure Conditions. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	45
110	Effects of Significant Variables on Compressive Strength of Soil-Fly Ash Geopolymer: Variable Analytical Approach Based on Neural Networks and Genetic Programming. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	34
111	Thermal enhancement of paraffin/hydrophobic expanded perlite granular phase change composite using graphene nanoplatelets. Energy and Buildings, 2018, 169, 206-215.	3.1	48
112	Inclusion of graphene oxide in cementitious composites: state-of-the-art review. Australian Journal of Civil Engineering, 2018, 16, 81-95.	0.6	22
113	The role of graphene oxide in limited long-term carbonation of cement-based matrix. Construction and Building Materials, 2018, 168, 858-866.	3.2	56
114	Improvement of mechanical properties by incorporating graphene oxide into cement mortar. Mechanics of Advanced Materials and Structures, 2018, 25, 1313-1322.	1.5	64
115	Specimens size, aggregate size, and aggregate type effect on spalling of concrete in fire. Fire and Materials, 2018, 42, 59-68.	0.9	24
116	Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments. Construction and Building Materials, 2018, 161, 519-527.	3.2	167
117	Waste solidification/stabilization of lead–zinc slag by utilizing fly ash based geopolymers. RSC Advances, 2018, 8, 32956-32965.	1.7	36
118	Effect of Polypropylene Fibre Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction. Materials, 2018, 11, 2352.	1.3	171
119	A Feasibility Study on HPMC-Improved Sulphoaluminate Cement for 3D Printing. Materials, 2018, 11, 2415.	1.3	27
120	Review of 10 years research on building energy performance gap: Life-cycle and stakeholder perspectives. Energy and Buildings, 2018, 178, 165-181.	3.1	143
121	Mitigation of heat stress risks through building energy efficiency upgrade: a case study of Melbourne, Australia. Australian Journal of Civil Engineering, 2018, 16, 64-78.	0.6	11
122	Methods of enhancing strength of geopolymer produced from powder-based 3D printing process. Materials Letters, 2018, 227, 281-283.	1.3	66
123	Strength Development of Soil–Fly Ash Geopolymer: Assessment of Soil, Fly Ash, Alkali Activators, and Water. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	59
124	Mechanical properties of layered geopolymer structures applicable in concrete 3D-printing. Construction and Building Materials, 2018, 176, 690-699.	3.2	137
125	Mechanical and thermal properties of lightweight geopolymer mortar incorporating crumb rubber. Journal of Cleaner Production, 2018, 195, 1069-1080.	4.6	127
126	Alternative Cementitious Materials and Their Composites. Advances in Materials Science and Engineering, 2018, 2018, 1-2.	1.0	1

#	Article	IF	CITATIONS
127	Fibre-reinforced boroaluminosilicate geopolymers: A comparative study. Ceramics International, 2018, 44, 16599-16605.	2.3	23
128	Molecular simulation of water and chloride ion diffusion in nanopores of alkali-activated aluminosilicate structures. Ceramics International, 2018, 44, 20723-20731.	2.3	20
129	The application of natural sedimentation for the dispersion of polyacrylamide microspheres. Journal of Dispersion Science and Technology, 2017, 38, 75-81.	1.3	0
130	Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events. Applied Energy, 2017, 194, 410-421.	5.1	181
131	High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: A micromechanics-based investigation. Archives of Civil and Mechanical Engineering, 2017, 17, 555-563.	1.9	137
132	Assessing the feasibility of integrating form-stable phase change material composites with cementitious composites and prevention of PCM leakage. Materials Letters, 2017, 192, 88-91.	1.3	64
133	Microstructure, electrical and mechanical properties of steel fibres reinforced cement mortars with partial metakaolin and limestone addition. Construction and Building Materials, 2017, 135, 8-20.	3.2	27
134	Regulating the chemical foaming reaction to control the porosity of geopolymer foams. Materials and Design, 2017, 120, 255-265.	3.3	116
135	Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing. Construction and Building Materials, 2017, 138, 398-409.	3.2	146
136	Performance of geopolymer high strength concrete wall panels and cylinders when exposed to a hydrocarbon fire. Construction and Building Materials, 2017, 137, 195-207.	3.2	44
137	Micromechanics constitutive modelling and optimization of strain hardening geopolymer composite. Ceramics International, 2017, 43, 5999-6007.	2.3	44
138	Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste. Construction and Building Materials, 2017, 145, 402-410.	3.2	248
139	Evaluating the passive and free cooling application methods of phase change materials in residential buildings: A comparative study. Energy and Buildings, 2017, 148, 238-256.	3.1	35
140	Alkali activated materials vs geopolymers: Role of boron as an eco-friendly replacement. Construction and Building Materials, 2017, 146, 297-302.	3.2	42
141	A Comparative Study on the Effectiveness of Passive and Free Cooling Application Methods of Phase Change Materials for Energy Efficient Retrofitting in Residential Buildings. Procedia Engineering, 2017, 180, 993-1002.	1.2	22
142	Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach. Applied Energy, 2017, 207, 654-664.	5.1	92
143	Experimental and Numerical Study on Energy Performance of Buildings Integrated with Phase Change Materials. Energy Procedia, 2017, 105, 2214-2219.	1.8	7
144	The behaviour of iron in geopolymer under thermal shock. Construction and Building Materials, 2017, 150, 248-251.	3.2	11

#	Article	IF	CITATIONS
145	Heat Transfer Performance Enhancement of Paraffin/Expanded Perlite Phase Change Composites with Graphene Nano-platelets. Energy Procedia, 2017, 105, 4866-4871.	1.8	41
146	Fly ash-based boroaluminosilicate geopolymers: Experimental and molecular simulations. Ceramics International, 2017, 43, 4119-4126.	2.3	57
147	Micromechanics-based investigation of a sustainable ambient temperature cured one-part strain hardening geopolymer composite. Construction and Building Materials, 2017, 131, 552-563.	3.2	137
148	Chloride ingress and steel corrosion in geopolymer concrete based on long term tests. Materials and Design, 2017, 116, 287-299.	3.3	142
149	Development of thermal energy storage cementitious composites (TESC) containing a novel paraffin/hydrophobic expanded perlite composite phase change material. Solar Energy, 2017, 158, 626-635.	2.9	71
150	Inhibition of carbonation attack in cement-based matrix due to adding graphene oxide. Australian Journal of Civil Engineering, 2017, 15, 20-31.	0.6	12
151	Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature. Australian Journal of Civil Engineering, 2017, 15, 61-71.	0.6	55
152	The application of sodium hydroxide and anhydrous borax as composite activator of class F fly ash for extending setting time. Fuel, 2017, 206, 534-540.	3.4	31
153	Thermal Energy Storage Enhancement of Lightweight Cement Mortars with the Application of Phase Change Materials. Procedia Engineering, 2017, 180, 1170-1177.	1.2	37
154	Durability of low‑calcium fly ash based geopolymer concrete culvert in a saline environment. Cement and Concrete Research, 2017, 100, 297-310.	4.6	121
155	Converting hydration heat to achieve cement mixture with early strength and low hydrating-thermal dissipation. Construction and Building Materials, 2017, 151, 113-118.	3.2	21
156	Thermal and mechanical properties of sustainable lightweight strain hardening geopolymer composites. Archives of Civil and Mechanical Engineering, 2017, 17, 55-64.	1.9	88
157	Effect of Aggregate Size on the Spalling of High-Strength Wall Panels Exposed to Hydrocarbon Fire. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	9
158	Behavior Change of Building Users and Energy Consumption. , 2017, , 189-196.		4
159	Boroaluminosilicate Geopolymers. , 2017, , 389-412.		0
160	Greenhouse Gas Emissions Due to Concrete Manufacture. , 2017, , 1-16.		15
161	Microscale investigation of fiber-matrix interface properties of strain-hardening geopolymer composite. Ceramics International, 2017, 43, 15616-15625.	2.3	55
162	Graphene Oxide as Additive to Replace Using Air-Entraining Agents. ACI Materials Journal, 2017, 114, .	0.3	2

#	Article	IF	CITATIONS
163	Effect of Delay Time on the Mechanical Properties of Extrusion-Based 3D Printed Concrete. , 2017, , .		15
164	Current Progress of 3D Concrete Printing Technologies. , 2017, , .		93
165	Application of Phase Change Materials to Reduce Heat Related Risks During Extreme Heat Waves in Australian Dwellings. Energy Procedia, 2016, 88, 725-731.	1.8	8
166	Amphoteric ion polymer as fluid loss additive for phosphoaluminate cement in the presence of sodium hexametaphosphate. Journal of Natural Gas Science and Engineering, 2016, 31, 474-480.	2.1	19
167	Parametric analysis for performance enhancement of phase change materials in naturally ventilated buildings. Energy and Buildings, 2016, 124, 35-45.	3.1	57
168	Carbonation of a blended slag-fly ash geopolymer concrete in field conditions after 8 years. Construction and Building Materials, 2016, 125, 661-669.	3.2	107
169	Investigation of PCM as retrofitting option to enhance occupant thermal comfort in a modern residential building. Energy and Buildings, 2016, 133, 217-229.	3.1	107
170	Durability Performance of Concrete Structures Built with Low Carbon Construction Materials. Energy Procedia, 2016, 88, 794-799.	1.8	13
171	Method of formulating geopolymer for 3D printing for construction applications. Materials and Design, 2016, 110, 382-390.	3.3	258
172	Development of granular expanded perlite/paraffin phase change material composites and prevention of leakage. Solar Energy, 2016, 137, 179-188.	2.9	100
173	Thermal effects of activators on the setting time and rate of workability loss of geopolymers. Ceramics International, 2016, 42, 19257-19268.	2.3	34
174	Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength. Construction and Building Materials, 2016, 123, 327-335.	3.2	235
175	The Spalling of Geopolymer High Strength Concrete Wall Panels and Cylinders Under Hydrocarbon Fire. MATEC Web of Conferences, 2016, 47, 02005.	0.1	6
176	Assessment of thermal cracking in concrete roof tiles. Materials and Design, 2016, 107, 470-477.	3.3	8
177	Strength Development and Microfabric Structure of Construction and Demolition Aggregates Stabilized with Fly Ash–Based Geopolymers. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	37
178	Matrix design of strain hardening fiber reinforced engineered geopolymer composite. Composites Part B: Engineering, 2016, 89, 253-265.	5.9	125
179	The properties of fly ash based geopolymer mortars made with dune sand. Materials and Design, 2016, 92, 571-578.	3.3	88
180	Suitability of Sarawak and Gladstone fly ash to produce geopolymers: A physical, chemical, mechanical, mineralogical and microstructural analysis. Ceramics International, 2016, 42, 9613-9620.	2.3	48

#	Article	IF	CITATIONS
181	Graphene Oxide Impact on Hardened Cement Expressed in Enhanced Freeze–Thaw Resistance. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	113
182	Stabilization of Demolition Materials for Pavement Base/Subbase Applications Using Fly Ash and Slag Geopolymers: Laboratory Investigation. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	107
183	The application of coated superabsorbent polymer in well cement for plugging the microcrack. Construction and Building Materials, 2016, 104, 72-84.	3.2	36
184	Modelling the correlation between building energy ratings and heat-related mortality and morbidity. Sustainable Cities and Society, 2016, 22, 29-39.	5.1	33
185	Suitability of polyacrylamide superabsorbent polymers as the internal curing agent of well cement. Construction and Building Materials, 2016, 112, 253-260.	3.2	39
186	The effect of different Na 2 O and K 2 O ratios of alkali activator on compressive strength of fly ash based-geopolymer. Construction and Building Materials, 2016, 106, 500-511.	3.2	155
187	Genetic programming in the simulation of Frp-to-concrete patch-anchored joints. Composite Structures, 2016, 138, 305-312.	3.1	18
188	Low elastic modulus and expansive well cement system: The application of gypsum microsphere. Construction and Building Materials, 2016, 106, 27-34.	3.2	41
189	Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer Concrete. Materials and Structures/Materiaux Et Constructions, 2016, 49, 1619-1628.	1.3	102
190	Mini-Beam Test for Assessing the Creep Trend of Paste, Mortar, and Concrete. , 2015, , .		2
191	Assessment of shear capacity methods of steel fiber reinforced concrete beams using full scale prestressed bridge beams. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3473-3483.	1.3	8
192	Chemically graded geopolymer under flexural loading: experimental modelling. RSC Advances, 2015, 5, 48456-48467.	1.7	2
193	Boroaluminosilicate geopolymers: role of NaOH concentration and curing temperature. RSC Advances, 2015, 5, 11973-11979.	1.7	7
194	Characteristics of Australian brown coal fly ash blended geopolymers. Construction and Building Materials, 2015, 101, 396-409.	3.2	29
195	Influence and role of feedstock Si and Al content in Geopolymer synthesis. Journal of Sustainable Cement-Based Materials, 2015, 4, 129-139.	1.7	27
196	Hybrid effects of alumina and silica nanoparticles on water absorption of geopolymers: Application of Taguchi approach. Measurement: Journal of the International Measurement Confederation, 2015, 60, 240-246.	2.5	52
197	Effects of chitosan treatment on strength and thickening properties of oil well cement. Construction and Building Materials, 2015, 75, 404-414.	3.2	26
198	Physical and mechanical properties of lightweight aerated geopolymer. Construction and Building Materials, 2015, 79, 236-244.	3.2	123

#	Article	IF	CITATIONS
199	Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate. Ceramics International, 2015, 41, 5696-5704.	2.3	284
200	Synthesis of geopolymer from industrial wastes. Journal of Cleaner Production, 2015, 99, 297-304.	4.6	73
201	Laboratory Evaluation of the Use of Cement-Treated Construction and Demolition Materials in Pavement Base and Subbase Applications. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	151
202	Predictions of long-term deflection of geopolymer concrete beams. Construction and Building Materials, 2015, 94, 10-19.	3.2	40
203	Tensile Strain Hardening Behavior of PVA Fiber-Reinforced Engineered Geopolymer Composite. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	135
204	Experimental modelling of chemically graded geopolymer under flexure: load application perpendicular to the graded region. RSC Advances, 2015, 5, 65030-65041.	1.7	1
205	Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine. Ceramics International, 2015, 41, 12164-12177.	2.3	64
206	Effect of size on the response of cylindrical concrete samples under cyclic loading. Construction and Building Materials, 2015, 84, 399-408.	3.2	71
207	Modeling of Compressive Strength of Geopolymers by a Hybrid ANFIS-ICA Approach. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	12
208	Geotechnical Properties of Lightly Stabilized Recycled Demolition Materials in Base/Sub-Base Applications. , 2015, , .		15
209	Incorporating graphene oxide in cement composites: A study of transport properties. Construction and Building Materials, 2015, 84, 341-347.	3.2	298
210	FEA modelling of fracture toughness of steel fibre-reinforced geopolymer composites. Materials & Design, 2015, 76, 215-222.	5.1	36
211	Offshore pipeline performance evaluation by different artificial neural networks approaches. Measurement: Journal of the International Measurement Confederation, 2015, 76, 117-128.	2.5	28
212	A genetic programming predictive model for parametric study of factors affecting strength of geopolymers. RSC Advances, 2015, 5, 85630-85639.	1.7	25
213	Modelling of upheaval buckling of offshore pipeline buried in clay soil using genetic programming. Engineering Structures, 2015, 101, 306-317.	2.6	30
214	A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites. Applied Energy, 2015, 157, 85-94.	5.1	249
215	Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers. Construction and Building Materials, 2015, 95, 592-599.	3.2	128
216	A numerical study of triaxial mechanical behaviour of geopolymer at different curing temperatures: An application for geological sequestration wells. Journal of Natural Gas Science and Engineering, 2015, 26, 1148-1160.	2.1	14

#	Article	IF	CITATIONS
217	Stress intensity factor against fracture toughness in functionally graded geopolymers. Archives of Civil and Mechanical Engineering, 2015, 15, 1007-1016.	1.9	6
218	Flexural strength of plain and fibre-reinforced boroaluminosilicate geopolymer. Construction and Building Materials, 2015, 76, 207-213.	3.2	40
219	Compressive strength of functionally graded geopolymers: Role of position of layers. Construction and Building Materials, 2015, 75, 31-34.	3.2	11
220	Johnson–Mehl–Avrami–Kolmogorov equation for prediction of compressive strength evolution of geopolymer. Ceramics International, 2015, 41, 3301-3304.	2.3	15
221	Efficacy of Available Superplasticizers on Geopolymers. Research Journal of Applied Sciences, Engineering and Technology, 2014, 7, 1464-1468.	0.1	27
222	Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells. Applied Energy, 2014, 114, 939-948.	5.1	49
223	Compressive strength of high strength class C fly ash-based geopolymers with reactive granulated blast furnace slag aggregates designed by Taguchi method. Materials & Design, 2014, 54, 483-490.	5.1	65
224	Mechanical behaviour of wellbore materials saturated in brine water with different salinity levels. Energy, 2014, 66, 239-249.	4.5	32
225	Compressive strength of tungsten mine waste- and metakaolin-based geopolymers. Ceramics International, 2014, 40, 6053-6062.	2.3	18
226	Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Materials & Design, 2014, 57, 667-672.	5.1	299
227	Effect of transient creep on compressive strength of geopolymer concrete for elevated temperature exposure. Cement and Concrete Research, 2014, 56, 182-189.	4.6	95
228	Developing of non-linear weight functions for mix design optimization of cementitious systems. Measurement: Journal of the International Measurement Confederation, 2014, 57, 154-166.	2.5	1
229	Development of thermal energy storage composites and prevention of PCM leakage. Applied Energy, 2014, 135, 225-233.	5.1	80
230	Distribution of oxides in fly ash controls strength evolution of geopolymers. Construction and Building Materials, 2014, 71, 72-82.	3.2	45
231	Complete triaxial stress–strain curves for geopolymer. Construction and Building Materials, 2014, 69, 196-202.	3.2	33
232	Comparative deflection hardening behavior of short fiber reinforced geopolymer composites. Construction and Building Materials, 2014, 70, 54-64.	3.2	130
233	Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construction and Building Materials, 2014, 73, 113-124.	3.2	548
234	Characteristics of boroaluminosilicate geopolymers. Construction and Building Materials, 2014, 70, 262-268.	3.2	36

#	Article	IF	CITATIONS
235	Effects of mineral admixtures and lime on disintegration of alkali-activated slag exposed to 50°C. Construction and Building Materials, 2014, 70, 254-261.	3.2	14
236	Fabrication and stability of form-stable diatomite/paraffin phase change material composites. Energy and Buildings, 2014, 76, 284-294.	3.1	161
237	Modelling of fracture strength of functionally graded geopolymer. Construction and Building Materials, 2014, 58, 38-45.	3.2	9
238	A numerical study of CO2 flow through geopolymer under down-hole stress conditions: Application for CO2 sequestration wells. Journal of Unconventional Oil and Gas Resources, 2014, 7, 62-70.	3.5	6
239	Effect of temperature on permeability of geopolymer: A primary well sealant for carbon capture and storage wells. Fuel, 2014, 117, 354-363.	3.4	46
240	Energy saving potential of phase change materials in major Australian cities. Energy and Buildings, 2014, 78, 192-201.	3.1	165
241	Effect of Superplasticizers on Workability of Fly Ash Based Geopolymer. , 2014, , 713-719.		2
242	Damping and microstructure of fly ash-based geopolymers. Journal of Materials Science, 2013, 48, 3128-3137.	1.7	28
243	Effect of strain rate on strength properties of low-calcium fly-ash-based geopolymer mortar under dry condition. Arabian Journal of Geosciences, 2013, 6, 2383-2389.	0.6	45
244	The role of the Islamic Azad University in science production of Iran: from the past to the future. Neural Computing and Applications, 2013, 23, 311-322.	3.2	0
245	Sub- and super-critical carbon dioxide permeability of wellbore materials under geological sequestration conditions: An experimental study. Energy, 2013, 54, 231-239.	4.5	29
246	The role of alumina on performance of alkali-activated slag paste exposed to 50°C. Cement and Concrete Research, 2013, 54, 143-150.	4.6	28
247	Analysis of Interfacial Debonding of Geopolymer Annular Sealing in CO2 Geo-sequestration Wellbore. Energy Procedia, 2013, 37, 5681-5691.	1.8	1
248	Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP. Expert Systems With Applications, 2013, 40, 5427-5438.	4.4	46
249	Predicting compressive strength of different geopolymers by artificial neural networks. Ceramics International, 2013, 39, 2247-2257.	2.3	50
250	Strength of geopolymer cured in saline water in ambient conditions. Fuel, 2013, 107, 34-39.	3.4	78
251	The permeability of geopolymer at down-hole stress conditions: Application for carbon dioxide sequestration wells. Applied Energy, 2013, 102, 1391-1398.	5.1	72
252	Compressive strength of geopolymers produced by ordinary Portland cement: Application of genetic programming for design. Materials & Design, 2013, 43, 356-366.	5.1	29

#	Article	IF	CITATIONS
253	The effect of aluminium oxide nanoparticles on the compressive strength and structure of self-compacting concrete. Magazine of Concrete Research, 2012, 64, 71-82.	0.9	5
254	Alkali-activated geopolymer produced by seeded fly ash and rice husk bark ash. Advances in Cement Research, 2012, 24, 301-309.	0.7	8
255	Computer-aided Prediction of the ZrO2 Nanoparticles' Effects on Tensile Strength and Percentage of Water Absorption of Concrete Specimens. Journal of Materials Science and Technology, 2012, 28, 83-96.	5.6	14
256	The influence of water absorption and porosity on the deterioration of cement paste and concrete exposed to elevated temperatures, as in a fire event. Cement and Concrete Composites, 2012, 34, 1067-1074.	4.6	69
257	Effect of aggregate size on spalling of geopolymer and Portland cement concretes subjected to elevated temperatures. Construction and Building Materials, 2012, 36, 365-372.	3.2	80
258	Artificial neural networks for prediction of percentage of water absorption of geopolymers produced by waste ashes. Bulletin of Materials Science, 2012, 35, 1019-1029.	0.8	5
259	Limited effect of diameter of fibres on spalling protection of concrete in fire. Materials and Structures/Materiaux Et Constructions, 2012, 45, 325-335.	1.3	12
260	Fracture Toughness of Functionally Graded Steels. Journal of Materials Engineering and Performance, 2012, 21, 558-563.	1.2	9
261	Factors influencing softening temperature and hot-strength of geopolymers. Cement and Concrete Composites, 2012, 34, 261-264.	4.6	41
262	Relationship between inter-aggregate spacing and the optimum fiber length for spalling protection of concrete in fire. Cement and Concrete Research, 2012, 42, 549-557.	4.6	38
263	Designing water resistant lightweight geopolymers produced from waste materials. Materials & Design, 2012, 35, 296-302.	5.1	46
264	Compressive strength of ash-based geopolymers at early ages designed by Taguchi method. Materials & Design, 2012, 37, 443-449.	5.1	63
265	Production geopolymers by Portland cement: Designing the main parameters' effects on compressive strength by Taguchi method. Materials & Design, 2012, 41, 43-49.	5.1	64
266	Geopolymer and Portland cement concretes in simulated fire. Magazine of Concrete Research, 2011, 63, 163-173.	0.9	166
267	Critical parameters of nylon and other fibres for spalling protection of high strength concrete in fire. Materials and Structures/Materiaux Et Constructions, 2011, 44, 599-610.	1.3	37
268	Effects of slag and cooling method on the progressive deterioration of concrete after exposure to elevated temperatures as in a fire event. Materials and Structures/Materiaux Et Constructions, 2011, 44, 709-718.	1.3	41
269	NMR, XRD, IR and synchrotron NEXAFS spectroscopic studies of OPC and OPC/slag cement paste hydrates. Materials and Structures/Materiaux Et Constructions, 2011, 44, 1773-1791.	1.3	89
270	Properties of geopolymer with seeded fly ash and rice husk bark ash. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7395-7401.	2.6	158

#	Article	IF	CITATIONS
271	Construction application of Fibre/Mesh method for protecting concrete columns in fire. Construction and Building Materials, 2011, 25, 2928-2938.	3.2	18
272	Fracture properties of geopolymer paste and concrete. Magazine of Concrete Research, 2011, 63, 763-771.	0.9	238
273	The effects of curing medium on the flexural strength and water permeability of cementitious composites containing Fe2O3 nanofillers. International Journal of Materials Research, 2011, 102, 1312-1317.	0.1	4
274	Investigation of the Cause of Disintegration of Alkali-Activated Slag at Temperature Exposure of 50°C. Journal of Materials in Civil Engineering, 2011, 23, 1589-1595.	1.3	15
275	Effects of Al2O3 nanoparticles on properties of self compacting concrete with ground granulated blast furnace slag (GCBFS) as binder. , 2011, 54, 2327.		1
276	Compressive strength and abrasion resistance of concrete containing SiO2 and CuO nanoparticles in different curing media. , 2011, 54, 2349.		1
277	Behavior of combined fly ash/slagâ€based geopolymers when exposed to high temperatures. Fire and Materials, 2010, 34, 163-175.	0.9	57
278	Test method for concrete spalling using small electric furnace. Fire and Materials, 2010, 34, 189-201.	0.9	6
279	Shrinkage-cracking behavior of OPC-fiber concrete at early-age. Materials and Structures/Materiaux Et Constructions, 2010, 43, 755-764.	1.3	18
280	Prediction of capillary transport of alkali activated slag cementitious binders under unsaturated conditions by elliptical pore shape modeling. Journal of Porous Materials, 2010, 17, 435-442.	1.3	6
281	Stress–strain behaviour and abrupt loss of stiffness of geopolymer at elevated temperatures. Cement and Concrete Composites, 2010, 32, 657-664.	4.6	80
282	Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cement and Concrete Research, 2010, 40, 334-339.	4.6	669
283	Synergistic effect of combined fibers for spalling protection of concrete in fire. Cement and Concrete Research, 2010, 40, 1547-1554.	4.6	62
284	Capillary Shape: Influence on Water Transport within Unsaturated Alkali Activated Slag Concrete. Journal of Materials in Civil Engineering, 2010, 22, 260-266.	1.3	23
285	Identifying error and maintenance intervention of pavement roughness time series with minimum message length inference. International Journal of Pavement Engineering, 2010, 11, 37-47.	2.2	1
286	Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures. Materials and Structures/Materiaux Et Constructions, 2010, 43, 765-773.	1.3	64
287	Effect of Pore-Size Distribution on Shrinkage of Concretes. Journal of Materials in Civil Engineering, 2010, 22, 525-532.	1.3	31
288	Development of model parameters for early-age properties and crack-width prediction of slag concretes. Magazine of Concrete Research, 2009, 61, 379-386.	0.9	1

#	Article	IF	CITATIONS
289	Thermal properties of geopolymers. , 2009, , 315-342.		24
290	Residual compressive behavior of alkaliâ€activated concrete exposed to elevated temperatures. Fire and Materials, 2009, 33, 51-62.	0.9	62
291	An investigation of the mechanisms for strength gain or loss of geopolymer mortar after exposure to elevated temperature. Journal of Materials Science, 2009, 44, 1873-1880.	1.7	142
292	Prediction of convective transport within unsaturated concrete utilizing pore size distribution data. Journal of Porous Materials, 2009, 16, 651-656.	1.3	6
293	Long-term progressive deterioration following fire exposure of OPC versus slag blended cement pastes. Materials and Structures/Materiaux Et Constructions, 2009, 42, 95-101.	1.3	41
294	Mechanism of early age shrinkage of concretes. Materials and Structures/Materiaux Et Constructions, 2009, 42, 461-468.	1.3	29
295	Recognizing Patterns in Seasonal Variation of Pavement Roughness Using Minimum Message Length Inference. Computer-Aided Civil and Infrastructure Engineering, 2009, 24, 120-129.	6.3	7
296	Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures. Journal of Materials Science, 2008, 43, 824-831.	1.7	179
297	Damage behavior of geopolymer composites exposed to elevated temperatures. Cement and Concrete Composites, 2008, 30, 986-991.	4.6	412
298	Phase transformations and mechanical strength of OPC/Slag pastes submitted to high temperatures. Materials and Structures/Materiaux Et Constructions, 2008, 41, 345-350.	1.3	101
299	Factors contributing to early age shrinkage cracking of slag concretes subjected to 7-days moist curing. Materials and Structures/Materiaux Et Constructions, 2008, 41, 633-642.	1.3	32
300	Effect of gypsum on free and restrained shrinkage behaviour of slag-concretes subjected to various curing conditions. Materials and Structures/Materiaux Et Constructions, 2008, 41, 1393-1403.	1.3	6
301	Effect of polypropylene fibers on shrinkage and cracking of concretes. Materials and Structures/Materiaux Et Constructions, 2008, 41, 1741-1753.	1.3	84
302	Shrinkage cracking properties of slag concretes with one-day curing. Magazine of Concrete Research, 2008, 60, 41-48.	0.9	31
303	Identifying the Effects of Soil and Climate Types on Seasonal Variation of Pavement Roughness Using MML Inference. Journal of Computing in Civil Engineering, 2008, 22, 90-99.	2.5	О
304	Unsaturated Capillary Flow within Alkali Activated Slag Concrete. Journal of Materials in Civil Engineering, 2008, 20, 565-570.	1.3	23
305	Dynamic response of pedestrian bridges for random crowd-loading. Australian Journal of Civil Engineering, 2007, 3, 27-38.	0.6	3
306	Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cement and Concrete Research, 2007, 37, 1583-1589.	4.6	609

#	Article	IF	CITATIONS
307	Green house gas emissions due to concrete manufacture. International Journal of Life Cycle Assessment, 2007, 12, 282-288.	2.2	569
308	Green house gas emissions due to concrete manufacture. International Journal of Life Cycle Assessment, 2007, 12, 282-288.	2.2	447
309	Deterioration modelling and prioritising of reinforced concrete bridges for maintenance. Australian Journal of Civil Engineering, 2005, 2, 1-12.	0.6	3
310	Stress–Strain Model for Laterally Confined Concrete. Journal of Materials in Civil Engineering, 2005, 17, 607-616.	1.3	70
311	Constitutive Model for Confined High Strength Concrete Subjected to Cyclic Loading. Journal of Materials in Civil Engineering, 2004, 16, 297-305.	1.3	16
312	A semi-closed-form solution for chloride diffusion in concrete with time-varying parameters. Magazine of Concrete Research, 2004, 56, 359-366.	0.9	8
313	Resistance of alkali-activated slag concrete to acid attack. Cement and Concrete Research, 2003, 33, 1607-1611.	4.6	465
314	Evaluation of an epoxy-bonded steel plating system for strengthening bridge decks. International Journal of Materials and Product Technology, 2003, 19, 284.	0.1	4
315	Modelling eccentrically loaded high-strength concrete columns. Magazine of Concrete Research, 2003, 55, 331-341.	0.9	0
316	Triaxial test results of high-strength concrete subjected to cyclic loading. Magazine of Concrete Research, 2003, 55, 321-329.	0.9	0
317	Sulfate attack on alkali-activated slag concrete. Cement and Concrete Research, 2002, 32, 211-216.	4.6	328
318	The Challenge of the Cement Industry Towards the Reduction of Greenhouse Emissions. , 2002, , .		5
319	Complete Triaxial Stress-Strain Curves of High-Strength Concrete. Journal of Materials in Civil Engineering, 2001, 13, 209-215.	1.3	246
320	Microcracking and strength development of alkali activated slag concrete. Cement and Concrete Composites, 2001, 23, 345-352.	4.6	231
321	The coloration phenomenon associated with slag blended cements. Cement and Concrete Research, 2001, 31, 313-320.	4.6	9
322	Resistance of alkali-activated slag concrete to alkali–aggregate reaction. Cement and Concrete Research, 2001, 31, 331-334.	4.6	93
323	Resistance of alkali-activated slag concrete to carbonation. Cement and Concrete Research, 2001, 31, 1277-1283.	4.6	221
324	Load capacity of slender reinforced concrete walls governed by flexural cracking strength of concrete. Magazine of Concrete Research, 2000, 52, 169-175.	0.9	3

#	Article	IF	CITATIONS
325	Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage. Cement and Concrete Research, 2000, 30, 791-798.	4.6	150
326	Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cement and Concrete Research, 2000, 30, 1401-1406.	4.6	507
327	Effect of admixtures on properties of alkali-activated slag concrete. Cement and Concrete Research, 2000, 30, 1367-1374.	4.6	284
328	Hydration temperatures in large high-strength concrete columns incorporating slag. Cement and Concrete Research, 2000, 30, 1791-1799.	4.6	17
329	Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder. Cement and Concrete Research, 1999, 29, 459-462.	4.6	118
330	Strength and shrinkage properties of alkali-activated slag concrete placed into a large column. Cement and Concrete Research, 1999, 29, 659-666.	4.6	37
331	Alkali activation of Australian slag cements. Cement and Concrete Research, 1999, 29, 113-120.	4.6	347
332	Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. Cement and Concrete Research, 1999, 29, 607-610.	4.6	108
333	Workability and mechanical properties of alkali activated slag concrete. Cement and Concrete Research, 1999, 29, 455-458.	4.6	311
334	Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cement and Concrete Research, 1999, 29, 1619-1625.	4.6	260
335	Stress versus strain relationship of high strength concrete under high lateral confinement. Cement and Concrete Research, 1999, 29, 1977-1982.	4.6	43
336	Early Age Strength and Workability of Slag Pastes Activated by NaOH and Na2CO3. Cement and Concrete Research, 1998, 28, 655-664.	4.6	116
337	Vertical strength variations in large columns using high-strength concrete incorporating slag. Magazine of Concrete Research, 1998, 50, 329-337.	0.9	0
338	Singularities in RC Beam Elements with Finite-Length Hinges. Journal of Structural Engineering, 1995, 121, 39-47.	1.7	6
339	Properties of Fresh and Hardened Glass Fiber Reinforced Fly Ash Based Geopolymer Concrete. Key Engineering Materials, 0, 594-595, 629-633.	0.4	27
340	Early Age Properties of Alkali Activated Brown Coal Fly Ash Binders. Advanced Materials Research, 0, 931-932, 457-462.	0.3	3
341	Effect of Type of Fiber on Inter-Layer Bond and Flexural Strengths of Extrusion-Based 3D Printed Geopolymer. Materials Science Forum, 0, 939, 155-162.	0.3	73
342	Influence of Binder Saturation Level on Compressive Strength and Dimensional Accuracy of Powder-Based 3D Printed Geopolymer. Materials Science Forum, 0, 939, 177-183.	0.3	33