Lu-Yang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4981063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling Epilepsy Using Human Induced Pluripotent Stem Cells-Derived Neuronal Cultures Carrying Mutations in Ion Channels and the Mechanistic Target of Rapamycin Pathway. Frontiers in Molecular Neuroscience, 2022, 15, 810081.	1.4	2
2	Dynamic tripartite construct of interregional engram circuits underlies forgetting of extinction memory. Molecular Psychiatry, 2022, 27, 4077-4091.	4.1	8
3	Interregulation between fragile X mental retardation protein and methyl CpG binding protein 2 in the mouse posterior cerebral cortex. Human Molecular Genetics, 2021, 29, 3744-3756.	1.4	9
4	Developmental plasticity of NMDA receptors at the calyx of Held synapse. Neuropharmacology, 2021, 196, 108697.	2.0	1
5	STEM-26. BLOOD-TUMOR BARRIER IS COMPOSED OF MECHANOSENSING TUMOR CELLS THAT MASK THERAPEUTIC VULNERABILITY. Neuro-Oncology, 2021, 23, vi26-vi26.	0.6	0
6	Identification of a molecular locus for normalizing dysregulated GABA release from interneurons in the Fragile X brain. Molecular Psychiatry, 2020, 25, 2017-2035.	4.1	52
7	The Î ³ -Protocadherins Regulate the Survival of GABAergic Interneurons during Developmental Cell Death. Journal of Neuroscience, 2020, 40, 8652-8668.	1.7	26
8	Chloride intracellular channel 1 cooperates with potassium channel EAG2 to promote medulloblastoma growth. Journal of Experimental Medicine, 2020, 217, .	4.2	24
9	Synaptic competition: â€~to be or not to be' the calyx of Held?. Journal of Physiology, 2020, 598, 4425-4426.	1.3	1
10	Rectification of radiotherapy-induced cognitive impairments in aged mice by reconstituted Sca-1+ stem cells from young donors. Journal of Neuroinflammation, 2020, 17, 51.	3.1	11
11	Delayed expression of activity-dependent gating switch in synaptic AMPARs at a central synapse. Molecular Brain, 2020, 13, 6.	1.3	6
12	Bilirubin enhances the activity of ASIC channels to exacerbate neurotoxicity in neonatal hyperbilirubinemia in mice. Science Translational Medicine, 2020, 12, .	5.8	21
13	Ca2+-dependent recruitment of voltage-gated sodium channels underlies bilirubin-induced overexcitation and neurotoxicity. Cell Death and Disease, 2019, 10, 774.	2.7	9
14	Underpinning heterogeneity in synaptic transmission by presynaptic ensembles of distinct morphological modules. Nature Communications, 2019, 10, 826.	5.8	48
15	Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4218-4227.	3.3	249
16	Interneuron NMDA receptors change the gear of motor learning in the cerebellar machine. Journal of Physiology, 2019, 597, 663-664.	1.3	1
17	Rectification ratio based determination of disulfide bonds of β2 extracellular loop of BK channel. Channels, 2019, 13, 17-32.	1.5	0
18	A Feedforward Mechanism Mediated by Mechanosensitive Ion Channel PIEZO1 and Tissue Mechanics Promotes Glioma Aggression. Neuron, 2018, 100, 799-815.e7.	3.8	241

LU-YANG WANG

#	Article	IF	CITATIONS
19	Accelerated Development of the First-Order Central Auditory Neurons With Spontaneous Activity. Frontiers in Molecular Neuroscience, 2018, 11, 183.	1.4	11
20	Ageing brains attend a symphony with asynchronous transmitter release. Journal of Physiology, 2017, 595, 613-614.	1.3	2
21	Bilirubin augments Ca2+ load of developing bushy neurons by targeting specific subtype of voltage-gated calcium channels. Scientific Reports, 2017, 7, 431.	1.6	20
22	The glycosylation of the extracellular loop ofl²2 subunits diversifies functional phenotypes of BK Channels. Channels, 2017, 11, 156-166.	1.5	7
23	NAD+ Attenuates Bilirubin-Induced Hyperexcitation in the Ventral Cochlear Nucleus by Inhibiting Excitatory Neurotransmission and Neuronal Excitability. Frontiers in Cellular Neuroscience, 2017, 11, 21.	1.8	14
24	Extrapolating microdomain Ca2+ dynamics using BK channels as a Ca2+ sensor. Scientific Reports, 2016, 6, 17343.	1.6	7
25	The role of gamma-aminobutyric acid/glycinergic synaptic transmission in mediating bilirubin-induced hyperexcitation in developing auditory neurons. Toxicology Letters, 2016, 240, 1-9.	0.4	6
26	Enhancing the fidelity of neurotransmission by activity-dependent facilitation of presynaptic potassium currents. Nature Communications, 2014, 5, 4564.	5.8	42
27	Remodelling at the calyx of Held–MNTB synapse in mice developing with unilateral conductive hearing loss. Journal of Physiology, 2014, 592, 1581-1600.	1.3	25
28	Structural Basis for Calcium and Magnesium Regulation of a Large Conductance Calcium-activated Potassium Channel with β1 Subunits. Journal of Biological Chemistry, 2014, 289, 16914-16923.	1.6	22
29	Gene delivery in mouse auditory brainstem and hindbrain using in utero electroporation. Molecular Brain, 2014, 7, 51.	1.3	5
30	Presynaptic nanodomains: a tale of two synapses. Frontiers in Cellular Neuroscience, 2014, 8, 455.	1.8	55
31	Action potential bursts enhance transmitter release at a giant central synapse. Journal of Physiology, 2011, 589, 2213-2227.	1.3	13
32	GluA4 is indispensable for driving fast neurotransmission across a highâ€fidelity central synapse. Journal of Physiology, 2011, 589, 4209-4227.	1.3	48
33	Morphological and Functional Continuum Underlying Heterogeneity in the Spiking Fidelity at the Calyx of Held Synapse <i>In Vitro</i> . Journal of Neuroscience, 2011, 31, 13386-13399.	1.7	56
34	Early dating influences longâ€ŧerm synaptic partnerships. Journal of Physiology, 2010, 588, 4339-4340.	1.3	0
35	A New Kv1.2 Channelopathy Underlying Cerebellar Ataxia. Journal of Biological Chemistry, 2010, 285, 32160-32173.	1.6	82
36	Septins Regulate Developmental Switching from Microdomain to Nanodomain Coupling of Ca2+ Influx to Neurotransmitter Release at a Central Synapse. Neuron, 2010, 67, 100-115.	3.8	107

LU-YANG WANG

#	Article	IF	CITATIONS
37	Action potential evoked transmitter release in central synapses: insights from the developing calyx of Held. Molecular Brain, 2009, 2, 36.	1.3	48
38	Synaptic Vesicles in Mature Calyx of Held Synapses Sense Higher Nanodomain Calcium Concentrations during Action Potential-Evoked Glutamate Release. Journal of Neuroscience, 2008, 28, 14450-14458.	1.7	119
39	Coincident Activation of Metabotropic Glutamate Receptors and NMDA Receptors (NMDARs) Downregulates Perisynaptic/Extrasynaptic NMDARs and Enhances High-Fidelity Neurotransmission at the Developing Calyx of Held Synapse. Journal of Neuroscience, 2007, 27, 9989-9999.	1.7	22
40	Activity-dependent changes in temporal components of neurotransmission at the juvenile mouse calyx of Held synapse. Journal of Physiology, 2007, 581, 581-602.	1.3	45
41	Amplitude and Kinetics of Action Potential-Evoked Ca2+ Current and Its Efficacy in Triggering Transmitter Release at the Developing Calyx of Held Synapse. Journal of Neuroscience, 2006, 26, 5698-5708.	1.7	85
42	Clutamate Transporter Studies Reveal the Pruning of Metabotropic Clutamate Receptors and Absence of AMPA Receptor Desensitization at Mature Calyx of Held Synapses. Journal of Neuroscience, 2005, 25, 8482-8497.	1.7	97
43	Developmental Transformation of the Release Modality at the Calyx of Held Synapse. Journal of Neuroscience, 2005, 25, 4131-4140.	1.7	254
44	The Role of AMPA Receptor Gating in the Development of High-Fidelity Neurotransmission at the Calyx of Held Synapse. Journal of Neuroscience, 2004, 24, 183-196.	1.7	85
45	Developmental profiles of glutamate receptors and synaptic transmission at a single synapse in the mouse auditory brainstem. Journal of Physiology, 2002, 540, 861-873.	1.3	131
46	Developmental profiles of glutamate receptors and synaptic transmission at a single synapse in the mouse auditory brainstem. , 2002, 540, 861.		1
47	The Dynamic Range for Gain Control of NMDA Receptor-Mediated Synaptic Transmission at a Single Synapse. Journal of Neuroscience, 2000, 20, RC115-RC115.	1.7	14
48	High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature, 1998, 394, 384-388.	13.7	548
49	Regulation of <i>N</i> -Methyl-d-Aspartate Receptor Function by Constitutively Active Protein Kinase C. Molecular Pharmacology, 1998, 54, 1055-1063.	1.0	98
50	Inhibition by propofol (2,6 diâ€isopropylphenol) of the Nâ€methylâ€Dâ€aspartate subtype of glutamate receptor in cultured hippocampal neurones. British Journal of Pharmacology, 1995, 116, 1761-1768.	2.7	209
51	Regulation of NMDA receptors in cultured hippocampal neurons by protein phosphatases 1 and 2A. Nature, 1994, 369, 230-232.	13.7	214
52	Regulation of kainate receptors by cAMP-dependent protein kinase and phosphatases. Science, 1991, 253, 1132-1135.	6.0	392