
Yuan-He Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4980827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Depthâ€dependent drivers of soil microbial necromass carbon across Tibetan alpine grasslands. Global Change Biology, 2022, 28, 936-949.	9.5	51
2	Stochastic processes regulate belowground community assembly in alpine grasslands on the Tibetan Plateau. Environmental Microbiology, 2022, 24, 179-194.	3.8	28
3	Microbial traits determine soil C emission in response to fresh carbon inputs in forests across biomes. Global Change Biology, 2022, 28, 1516-1528.	9.5	37
4	High potential of stable carbon sequestration in phytoliths of China's grasslands. Global Change Biology, 2022, 28, 2736-2750.	9.5	23
5	Permafrost Degradation Diminishes Terrestrial Ecosystem Carbon Sequestration Capacity on the Qinghaiâ€Tibetan Plateau. Global Biogeochemical Cycles, 2022, 36, .	4.9	11
6	Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Sciences, 2022, 65, 861-895.	4.9	163
7	An integrated belowground traitâ€based understanding of nitrogenâ€driven plant diversity loss. Global Change Biology, 2022, 28, 3651-3664.	9.5	22
8	Divergent Drivers of Various Topsoil Phosphorus Fractions Across Tibetan Alpine Grasslands. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	6
9	Nitrogen input enhances microbial carbon use efficiency by altering plant–microbe–mineral interactions. Global Change Biology, 2022, 28, 4845-4860.	9.5	36
10	Substantial nonâ€growing season carbon dioxide loss across Tibetan alpine permafrost region. Global Change Biology, 2022, 28, 5200-5210.	9.5	13
11	Divergent Trajectory of Soil Autotrophic and Heterotrophic Respiration upon Permafrost Thaw. Environmental Science & Technology, 2022, 56, 10483-10493.	10.0	5
12	Shift in controlling factors of carbon stocks across biomes on the Qinghai-Tibetan Plateau. Environmental Research Letters, 2022, 17, 074016.	5.2	2
13	Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China. Global Change Biology, 2022, 28, 6065-6085.	9.5	29
14	Global patterns and climatic drivers of above- and belowground net primary productivity in grasslands. Science China Life Sciences, 2021, 64, 739-751.	4.9	23
15	Altered microbial structure and function after thermokarst formation. Global Change Biology, 2021, 27, 823-835.	9.5	33
16	Stream Dissolved Organic Matter in Permafrost Regions Shows Surprising Compositional Similarities but Negative Priming and Nutrient Effects. Global Biogeochemical Cycles, 2021, 35, e2020GB006719.	4.9	30
17	Largeâ€scale evidence for microbial response and associated carbon release after permafrost thaw. Global Change Biology, 2021, 27, 3218-3229.	9.5	44
18	Above- and below-ground resource acquisition strategies determine plant species responses to nitrogen enrichment. Annals of Botany, 2021, 128, 31-44.	2.9	8

#	Article	IF	CITATIONS
19	Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Science Advances, 2021, 7, .	10.3	130
20	Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecology Letters, 2021, 24, 1018-1028.	6.4	96
21	Global synthesis for the scaling of soil microbial nitrogen to phosphorus in terrestrial ecosystems. Environmental Research Letters, 2021, 16, 044034.	5.2	8
22	Changes in aboveâ€fbelowâ€ground biodiversity and plant functional composition mediate soil respiration response to nitrogen input. Functional Ecology, 2021, 35, 1171-1182.	3.6	19
23	Soil Nitrogen Transformations Respond Diversely to Multiple Levels of Nitrogen Addition in a Tibetan Alpine Steppe. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006211.	3.0	2
24	Methanogenic Community, CH ₄ Production Potential and Its Determinants in the Active Layer and Permafrost Deposits on the Tibetan Plateau. Environmental Science & Technology, 2021, 55, 11412-11423.	10.0	14
25	Temperature sensitivity of permafrost carbon release mediated by mineral and microbial properties. Science Advances, 2021, 7, .	10.3	46
26	Phosphorus rather than nitrogen regulates ecosystem carbon dynamics after permafrost thaw. Global Change Biology, 2021, 27, 5818-5830.	9.5	31
27	Rice paddy soils are a quantitatively important carbon store according to a global synthesis. Communications Earth & Environment, 2021, 2, .	6.8	71
28	Response to Comment on â€~Soil carbon persistence governed by plant input and mineral protection at regional and global scales'. Ecology Letters, 2021, 24, 2529-2532.	6.4	2
29	<i>Spartina alterniflora</i> invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics. Clobal Change Biology, 2021, 27, 1627-1644.	9.5	62
30	Fieldâ€Based Estimation of Net Primary Productivity and Its Above―and Belowground Partitioning in Global Grasslands. Journal of Geophysical Research G: Biogeosciences, 2021, 126, .	3.0	11
31	Mineral and Climatic Controls Over Soil Organic Matter Stability Across the Tibetan Alpine Permafrost Region. Global Biogeochemical Cycles, 2021, 35, .	4.9	12
32	Different chemical composition and storage mechanism of soil organic matter between active and permafrost layers on the Qinghai–Tibetan Plateau. Journal of Soils and Sediments, 2020, 20, 653-664.	3.0	4
33	Shrub encroachment decreases soil inorganic carbon stocks in Mongolian grasslands. Journal of Ecology, 2020, 108, 678-686.	4.0	20
34	Warming alters surface soil organic matter composition despite unchanged carbon stocks in a Tibetan permafrost ecosystem. Functional Ecology, 2020, 34, 911-922.	3.6	38
35	The driving factors of mercury storage in the Tibetan grassland soils underlain by permafrost. Environmental Pollution, 2020, 265, 115079.	7.5	8
36	Soil Fungal Community Composition, Not Assembly Process, Was Altered by Nitrogen Addition and Precipitation Changes at an Alpine Steppe. Frontiers in Microbiology, 2020, 11, 579072.	3.5	19

#	Article	IF	CITATIONS
37	Permafrost nitrogen status and its determinants on the Tibetan Plateau. Global Change Biology, 2020, 26, 5290-5302.	9.5	49
38	Global pattern and drivers of nitrogen saturation threshold of grassland productivity. Functional Ecology, 2020, 34, 1979-1990.	3.6	29
39	Progressive nitrogen limitation across the Tibetan alpine permafrost region. Nature Communications, 2020, 11, 3331.	12.8	63
40	Nitrous oxide emissions from permafrost-affected soils. Nature Reviews Earth & Environment, 2020, 1, 420-434.	29.7	90
41	A comparison of patterns of microbial C : N : P stoichiometry between topsoil and subsoil along aridity gradient. Biogeosciences, 2020, 17, 2009-2019.	an 3.3	13
42	Warming effects on methane fluxes differ between two alpine grasslands with contrasting soil water status. Agricultural and Forest Meteorology, 2020, 290, 107988.	4.8	25
43	Responses of soil respiration to experimental warming in an alpine steppe on the Tibetan Plateau. Environmental Research Letters, 2019, 14, 094015.	5.2	14
44	Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Science Advances, 2019, 5, eaau1218.	10.3	111
45	Global soil–climate–biome diagram: linking surface soil properties to climate and biota. Biogeosciences, 2019, 16, 2857-2871.	3.3	35
46	Leaf Area Rather Than Photosynthetic Rate Determines the Response of Ecosystem Productivity to Experimental Warming in an Alpine Steppe. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2277-2287.	3.0	17
47	Disentangling the Effects of Climate, Vegetation, Soil and Related Substrate Properties on the Biodegradability of Permafrostâ€Derived Dissolved Organic Carbon. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3377-3389.	3.0	19
48	Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nature Communications, 2019, 10, 5112.	12.8	187
49	The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 2019, 10, 4195.	12.8	39
50	Trajectory of Topsoil Nitrogen Transformations Along a Thermoâ€Erosion Gully on the Tibetan Plateau. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1342-1354.	3.0	10
51	Unimodal Response of Soil Methane Consumption to Increasing Nitrogen Additions. Environmental Science & Technology, 2019, 53, 4150-4160.	10.0	33
52	Trait identity and functional diversity coâ€drive response of ecosystem productivity to nitrogen enrichment. Journal of Ecology, 2019, 107, 2402-2414.	4.0	45
53	Altered trends in carbon uptake in China's terrestrial ecosystems under the enhanced summer monsoon and warming hiatus. National Science Review, 2019, 6, 505-514.	9.5	93
54	Magnitude and Drivers of Potential Methane Oxidation and Production across the Tibetan Alpine Permafrost Region. Environmental Science & Technology, 2019, 53, 14243-14252.	10.0	19

#	Article	IF	CITATIONS
55	Al/Fe Mineral Controls on Soil Organic Carbon Stock Across Tibetan Alpine Grasslands. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 247-259.	3.0	48
56	Linkage of plant and abiotic properties to the abundance and activity of N-cycling microbial communities in Tibetan permafrost-affected regions. Plant and Soil, 2019, 434, 453-466.	3.7	18
57	Spatially-explicit estimate of soil nitrogen stock and its implication for land model across Tibetan alpine permafrost region. Science of the Total Environment, 2019, 650, 1795-1804.	8.0	19
58	Dryland soils in northern China sequester carbon during the early 2000s warming hiatus period. Functional Ecology, 2018, 32, 1620-1630.	3.6	18
59	Selective Leaching of Dissolved Organic Matter From Alpine Permafrost Soils on the Qinghaiâ€Tibetan Plateau. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1005-1016.	3.0	24
60	Ultraviolet radiation rather than inorganic nitrogen increases dissolved organic carbon biodegradability in a typical thermo-erosion gully on the Tibetan Plateau. Science of the Total Environment, 2018, 627, 1276-1284.	8.0	16
61	Carbon pools in China's terrestrial ecosystems: New estimates based on an intensive field survey. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4021-4026.	7.1	466
62	Changes in Methane Flux along a Permafrost Thaw Sequence on the Tibetan Plateau. Environmental Science & Technology, 2018, 52, 1244-1252.	10.0	50
63	No significant changes in topsoil carbon in the grasslands of northern China between the 1980s and 2000s. Science of the Total Environment, 2018, 624, 1478-1487.	8.0	26
64	Diverse responses of belowground internal nitrogen cycling to increasing aridity. Soil Biology and Biochemistry, 2018, 116, 189-192.	8.8	24
65	Estimates of grassland biomass and turnover time on the Tibetan Plateau. Environmental Research Letters, 2018, 13, 014020.	5.2	59
66	Spatiotemporal transformation of dissolved organic matter along an alpine stream flow path on the Qinghai–Tibet Plateau: importance of source and permafrost degradation. Biogeosciences, 2018, 15, 6637-6648.	3.3	19
67	Differential responses of heterotrophic and autotrophic respiration to nitrogen addition and precipitation changes in a Tibetan alpine steppe. Scientific Reports, 2018, 8, 16546.	3.3	19
68	Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nature Communications, 2018, 9, 3951.	12.8	135
69	Reduced quantity and quality of SOM along a thaw sequence on the Tibetan Plateau. Environmental Research Letters, 2018, 13, 104017.	5.2	22
70	Soil Temperature Dynamics Modulate N ₂ O Flux Response to Multiple Nitrogen Additions in an Alpine Steppe. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3308-3319.	3.0	32
71	Magnitude and Pathways of Increased Nitrous Oxide Emissions from Uplands Following Permafrost Thaw. Environmental Science & Technology, 2018, 52, 9162-9169.	10.0	33
72	Nonlinear response of soil respiration to increasing nitrogen additions in a Tibetan alpine steppe. Environmental Research Letters, 2017, 12, 024018.	5.2	45

#	Article	IF	CITATIONS
73	Global patterns of woody residence time and its influence on model simulation of aboveground biomass. Global Biogeochemical Cycles, 2017, 31, 821-835.	4.9	18
74	Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience, 2017, 10, 420-424.	12.9	166
75	Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe. Global Change Biology, 2017, 23, 5249-5259.	9.5	70
76	Experimental warming increased soil nitrogen sink in the Tibetan permafrost. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1870-1879.	3.0	14
77	Warming effects on permafrost ecosystem carbon fluxes associated with plant nutrients. Ecology, 2017, 98, 2851-2859.	3.2	34
78	Decreased Soil Cation Exchange Capacity Across Northern China's Grasslands Over the Last Three Decades. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3088-3097.	3.0	26
79	Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Molecular Ecology, 2017, 26, 6608-6620.	3.9	92
80	Global patterns of root dynamics under nitrogen enrichment. Global Ecology and Biogeography, 2017, 26, 102-114.	5.8	104
81	Patterns and drivers of soil microbial communities in Tibetan alpine and global terrestrial ecosystems. Journal of Biogeography, 2016, 43, 2027-2039.	3.0	101
82	The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Global Change Biology, 2016, 22, 2688-2701.	9.5	189
83	Dynamic patterns of nitrogen: Phosphorus ratios in forest soils of China under changing environment. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2410-2421.	3.0	48
84	Linking microbial C:N:P stoichiometry to microbial community and abiotic factors along a 3500â€km grassland transect on the Tibetan Plateau. Global Ecology and Biogeography, 2016, 25, 1416-1427.	5.8	108
85	Linking temperature sensitivity of soil CO ₂ release to substrate, environmental, and microbial properties across alpine ecosystems. Global Biogeochemical Cycles, 2016, 30, 1310-1323.	4.9	106
86	Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nature Communications, 2016, 7, 13046.	12.8	141
87	Allometric biomass partitioning under nitrogen enrichment: Evidence from manipulative experiments around the world. Scientific Reports, 2016, 6, 28918.	3.3	30
88	Inverse analysis of coupled carbon–nitrogen cycles against multiple datasets at ambient and elevated CO ₂ . Journal of Plant Ecology, 2016, 9, 285-295.	2.3	28
89	Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches. Ecological Indicators, 2016, 60, 1031-1040.	6.3	53
90	Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau. PLoS ONE, 2016, 11, e0154251.	2.5	27

#	Article	lF	CITATIONS
91	How has soil carbon stock changed over recent decades?. Global Change Biology, 2015, 21, 3197-3199.	9.5	38
92	Longâ€ŧerm changes in soil pH across major forest ecosystems in China. Geophysical Research Letters, 2015, 42, 933-940.	4.0	60
93	Edaphic rather than climatic controls over ¹³ C enrichment between soil and vegetation in alpine grasslands on the Tibetan Plateau. Functional Ecology, 2015, 29, 839-848.	3.6	55
94	Evidence for environmentally enhanced forest growth. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9527-9532.	7.1	116
95	Climatic and Edaphic Controls on Soil pH in Alpine Grasslands on the Tibetan Plateau, China: A Quantitative Analysis. Pedosphere, 2014, 24, 39-44.	4.0	61
96	Stoichiometric shifts in surface soils over broad geographical scales: evidence from <scp>C</scp> hina's grasslands. Global Ecology and Biogeography, 2014, 23, 947-955.	5.8	63
97	Increased topsoil carbon stock across China's forests. Global Change Biology, 2014, 20, 2687-2696.	9.5	79
98	Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems. Global Ecology and Biogeography, 2014, 23, 979-987.	5.8	66
99	Largeâ€scale estimation and uncertainty analysis of gross primary production in Tibetan alpine grasslands. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 466-486.	3.0	50
100	Global patterns of ecosystem carbon flux in forests: A biometric dataâ€based synthesis. Global Biogeochemical Cycles, 2014, 28, 962-973.	4.9	35
101	Effects of Substrate Addition on Soil Respiratory Carbon Release Under Long-Term Warming and Clipping in a Tallgrass Prairie. PLoS ONE, 2014, 9, e114203.	2.5	12
102	The impact of agricultural land use changes on soil organic carbon dynamics in the Danjiangkou Reservoir area of China. Plant and Soil, 2013, 366, 415-424.	3.7	98
103	Vegetation and Soil 15N Natural Abundance in Alpine Grasslands on the Tibetan Plateau: Patterns and Implications. Ecosystems, 2013, 16, 1013-1024.	3.4	33
104	Variations of root and heterotrophic respiration along environmental gradients in China's forests. Journal of Plant Ecology, 2013, 6, 358-367.	2.3	22
105	Effects of Forest Age on Soil Autotrophic and Heterotrophic Respiration Differ between Evergreen and Deciduous Forests. PLoS ONE, 2013, 8, e80937.	2.5	12
106	Widespread decreases in topsoil inorganic carbon stocks across <scp>C</scp> hina's grasslands during 1980s–2000s. Global Change Biology, 2012, 18, 3672-3680.	9.5	65
107	Geography, environment, and spatial turnover of species in China's grasslands. Ecography, 2012, 35, 1103-1109.	4.5	30
108	Significant soil acidification across northern China's grasslands during 1980s–2000s. Global Change Biology, 2012, 18, 2292-2300.	9.5	200

#	Article	IF	CITATIONS
109	Carbon : nitrogen stoichiometry in forest ecosystems during stand development. Global Ecology and Biogeography, 2011, 20, 354-361.	5.8	144
110	lsometric biomass partitioning pattern in forest ecosystems: evidence from temporal observations during stand development. Journal of Ecology, 2011, 99, 431-437.	4.0	19
111	Responses of ecosystem nitrogen cycle to nitrogen addition: a metaâ€analysis. New Phytologist, 2011, 189, 1040-1050.	7.3	383
112	Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytologist, 2011, 190, 977-989.	7.3	221
113	Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis. Agriculture, Ecosystems and Environment, 2011, 140, 234-244.	5.3	390
114	Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. Plant and Soil, 2011, 343, 393-400.	3.7	78
115	Biomass carbon stocks and their changes in northern China's grasslands during 1982–2006. Science China Life Sciences, 2010, 53, 841-850.	4.9	118
116	Patterns of above- and belowground biomass allocation in China's grasslands: Evidence from individual-level observations. Science China Life Sciences, 2010, 53, 851-857.	4.9	66
117	Ecosystem carbon stocks and their changes in China's grasslands. Science China Life Sciences, 2010, 53, 757-765.	4.9	153
118	Soil carbon stock and its changes in northern China's grasslands from 1980s to 2000s. Global Change Biology, 2010, 16, 3036-3047.	9.5	169
119	Largeâ€scale pattern of biomass partitioning across China's grasslands. Global Ecology and Biogeography, 2010, 19, 268-277.	5.8	210
120	Environmental factors covary with plant diversity–productivity relationships among Chinese grassland sites. Global Ecology and Biogeography, 2010, 19, 233-243.	5.8	150
121	Soil inorganic carbon stock in the Tibetan alpine grasslands. Global Biogeochemical Cycles, 2010, 24, .	4.9	63
122	Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophysical Research Letters, 2010, 37, .	4.0	80
123	Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Global Change Biology, 2009, 15, 2723-2729.	9.5	135
124	Above―and belowground biomass allocation in Tibetan grasslands. Journal of Vegetation Science, 2009, 20, 177-184.	2.2	264
125	Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Science in China Series C: Life Sciences, 2008, 51, 263-270.	1.3	99
126	Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 2008, 14, 1592-1599.	9.5	462

#	Article	IF	CITATIONS
127	Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophysical Research Letters, 2008, 35, .	4.0	139
128	Storage, Patterns and Controls of Soil Nitrogen in China. Pedosphere, 2007, 17, 776-785.	4.0	60
129	Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry, 2007, 84, 131-141.	3.5	238
130	Decreased ultraviolet radiation and decomposer biodiversity inhibit litter decomposition under continuous nitrogen inputs. Functional Ecology, 0, , .	3.6	6
131	We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems. Frontiers in Environmental Science, 0, 10, .	3.3	9