MaÅ,gorzata Lewandowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4980796/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The fabrication of graphene-reinforced Al-based nanocomposites using high-pressure torsion. Acta Materialia, 2019, 164, 499-511.	7.9	121
2	The effect of grain size and grain boundary misorientation on the corrosion resistance of commercially pure aluminium. Corrosion Science, 2019, 148, 57-70.	6.6	98
3	Precipitation phenomena in ultrafine grained Al–Mg–Si alloy with heterogeneous microstructure. Acta Materialia, 2016, 103, 547-557.	7.9	89
4	Structural impact on the Hall–Petch relationship in an Al–5Mg alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 9-15.	5.6	81
5	Recent development in grain refinement by hydrostatic extrusion. Journal of Materials Science, 2008, 43, 7299-7306.	3.7	77
6	Mechanical properties, structural and texture evolution of biocompatible Ti–45Nb alloy processed by severe plastic deformation. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 93-105.	3.1	66
7	Effect of Ti on phase stability and strengthening mechanisms of a nanocrystalline CoCrFeMnNi high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 196-206.	5.6	66
8	The influence of carbon fillers on the thermal properties of polyurethane foam. Journal of Thermal Analysis and Calorimetry, 2016, 123, 283-291.	3.6	54
9	New environmentally friendly polyazomethines with thiophene rings for polymer solar cells. Solar Energy, 2015, 117, 246-259.	6.1	51
10	Surface characterization of Caâ€₽/Ag/TiO2 nanotube composite layers on Ti intended for biomedical applications. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1954-1962.	4.0	46
11	Structural and mechanical properties of nanocrystalline titanium and 316LVM steel processed by hydrostatic extrusion. Journal of Microscopy, 2006, 223, 272-274.	1.8	45
12	Mechanical properties and thermal stability of nanostructured ODS RAF steels. Mechanics of Materials, 2013, 67, 15-24.	3.2	45
13	Microstructure and mechanical properties of friction stir welded joints made from ultrafine grained aluminium 1050. Materials and Design, 2015, 88, 22-31.	7.0	45
14	In situ spectroelectrochemical surface-enhanced Raman scattering (SERS) investigations on composite Ag/TiO2-nanotubes/Ti substrates. Surface Science, 2009, 603, 2820-2824.	1.9	44
15	Thermal stability of a nanostructured aluminium alloy. Materials Characterization, 2005, 55, 395-401.	4.4	42
16	Passivation of Al–Cr–Fe and Al–Cu–Fe–Cr complex metallic alloys in 1M H2SO4 and 1M NaOH solutions. Corrosion Science, 2011, 53, 1825-1837.	6.6	42
17	Low temperature mechanical properties of 316L type stainless steel after hydrostatic extrusion. Fusion Engineering and Design, 2011, 86, 2517-2521.	1.9	42
18	Evaluation of thermal stability of ultrafine grained aluminium matrix composites reinforced with carbon nanotubes. Composites Science and Technology, 2011, 71, 1881-1885.	7.8	40

#	Article	IF	CITATIONS
19	Evolution of microstructure and hardness in an AZ80 magnesium alloy processed by high-pressure torsion. Journal of Materials Research and Technology, 2016, 5, 152-158.	5.8	39
20	Raman investigations of TiO ₂ nanotube substrates covered with thin Ag or Cu deposits. Journal of Raman Spectroscopy, 2009, 40, 1652-1656.	2.5	36
21	Evaluation of the Antibacterial Activity of Ag‣oaded TiO ₂ Nanotubes. European Journal of Inorganic Chemistry, 2012, 2012, 5199-5206.	2.0	36
22	Hydrostatic Extrusion and Nanostructure Formation in an Aluminium Alloy. Solid State Phenomena, 2005, 101-102, 65-68.	0.3	35
23	Enhancement in mechanical properties of a β-titanium alloy by high-pressure torsion. Journal of Materials Research and Technology, 2015, 4, 79-83.	5.8	35
24	Mechanical properties and corrosion resistance of ultrafine grained austenitic stainless steel processed by hydrostatic extrusion. Materials and Design, 2017, 136, 34-44.	7.0	35
25	STEREOLOGY OF NANO-MATERIALS. Image Analysis and Stereology, 2010, 29, 1.	0.9	35
26	Age-Related Changes in the Mechanical Properties of Human Fibroblasts and Its Prospective Reversal After Anti-Wrinkle Tripeptide Treatment. International Journal of Peptide Research and Therapeutics, 2014, 20, 77-85.	1.9	32
27	The influence of severe plastic deformation processes on electrical conductivity of commercially pure aluminium and 5483 aluminium alloy. Archives of Civil and Mechanical Engineering, 2016, 16, 717-723.	3.8	31
28	Influence of Y2O3 and Fe2Y additions on the formation of nano-scale oxide particles and the mechanical properties of an ODS RAF steel. Fusion Engineering and Design, 2011, 86, 2417-2420.	1.9	28
29	Kinetics of anatase phase formation in TiO2 films during atomic layer deposition and post-deposition annealing. CrystEngComm, 2013, 15, 9949.	2.6	27
30	Microstructure and mechanical properties of nanocrystalline titanium and Ti-Ta-Nb alloy manufactured using various deformation methods. Physica Status Solidi A, 2005, 202, 2309-2320.	1.7	25
31	Grain refinement in CuCrZr by SPD processing. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1136-1138.	1.8	25
32	FEM modelling of the combined effect of grain boundaries and second phase particles on the flow stress of nanocrystalline metals. Computational Materials Science, 2012, 53, 286-293.	3.0	25
33	Precipitation strengthening of ultrafine-grained Al–Mg–Si alloy processed by hydrostatic extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 609, 80-87.	5.6	25
34	Collagen immobilization on 316L stainless steel surface with cathodic deposition of calcium phosphate. Applied Surface Science, 2011, 257, 5037-5045.	6.1	24
35	Microstructure and thermal properties of Cu-SiC composite materials depending on the sintering technique. Science of Sintering, 2017, 49, 11-22.	1.4	22
36	Mechanism of Grain Refinement in Aluminium in the Process of Hydrostatic Extrusion. Solid State Phenomena, 2006, 114, 109-116.	0.3	21

#	Article	IF	CITATIONS
37	Fabrication of high strength nanostructured aluminium alloys by hydrostatic extrusion. International Journal of Materials Research, 2007, 98, 172-177.	0.3	21
38	SEM, Scanning Auger and XPS characterization of chemically pretreated Ti surfaces intended for biomedical applications. Materials Chemistry and Physics, 2007, 104, 93-97.	4.0	21
39	Microstructural changes upon annealing in ODS-strengthened ultrafine grained ferritic steel. Journal of Materials Science, 2013, 48, 4620-4625.	3.7	21
40	Mechanical properties of nanostructured 316LVM stainless steel annealed under pressure. Mechanics of Materials, 2013, 67, 25-32.	3.2	21
41	Effect of grain size on the melting point of confined thin aluminum films. Journal of Applied Physics, 2014, 116, .	2.5	21
42	Cryogenic strength and microstructure of a hydrostatically extruded austenitic steel 1.4429 (AISI) Tj ETQq0 0 0	rgBT_/Ove 1.7	rlock 10 Tf 50
43	Similar and dissimilar welds of ultrafine grained aluminium obtained by friction stir welding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139076.	5.6	21
44	Microstructural changes in NiO–ScSZ composite following reduction processes in pure and diluted hydrogen. Materials Characterization, 2014, 87, 159-165.	4.4	20
45	Strengthening mechanisms in ultrafine grained Al-Mg-Si alloy processed by hydrostatic extrusion – Influence of ageing temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 447-458.	5.6	20
46	Effect of applied pressure on microstructure development and homogeneity in an aluminium alloy processed by high-pressure torsion. Journal of Alloys and Compounds, 2016, 688, 736-745.	5.5	20
47	Influence of hot rolling and high speed hydrostatic extrusion on the microstructure and mechanical properties of an ODS RAF steel. Journal of Nuclear Materials, 2011, 409, 86-93.	2.7	19
48	The strength and thermal stability of Al–5Mg alloys nano-engineered using methods of metal forming. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 134-139.	5.6	19
49	Application of linear friction welding for joining ultrafine grained aluminium. Journal of Manufacturing Processes, 2020, 56, 540-549.	5.9	19
50	Fabrication and characterization of nanostructured immiscible Cu–Ta alloys processed by high-pressure torsion. Journal of Alloys and Compounds, 2020, 832, 155007.	5.5	19
51	Manufacturing of coarse and ultrafine-grained aluminum matrix composites reinforced with Al2O3 nanoparticles via friction stir processing. Journal of Manufacturing Processes, 2022, 80, 359-373.	5.9	19
52	Ultrafine-Grained Plates of Al-Mg-Si Alloy Obtained by Incremental Equal Channel Angular Pressing: Microstructure and Mechanical Properties. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4871-4882.	2.2	18
53	Nanoscale characterization of anodic oxide films on Ti-6Al-4V alloy. Thin Solid Films, 2007, 515, 6460-6464.	1.8	17
54	The effect of grain size diversity on the flow stress of nanocrystalline metals by finite-element modelling. Scripta Materialia, 2012, 67, 408-411.	5.2	17

#	Article	IF	CITATIONS
55	Superior strength of tri-layered Al–Cu–Al nano-composites processed by high-pressure torsion. Journal of Alloys and Compounds, 2020, 846, 156380.	5.5	17
56	Structure and properties of nano-sized Eurofer 97 steel obtained by hydrostatic extrusion. Journal of Nuclear Materials, 2009, 386-388, 499-502.	2.7	16
57	Recrystallization and grain growth of a nano/ultrafine structured austenitic stainless steel during annealing under high hydrostatic pressure. Journal of Materials Science, 2018, 53, 11823-11836.	3.7	15
58	Processing of CP-Ti by high-pressure torsion and the effect of surface modification using a post-HPT laser treatment. Journal of Alloys and Compounds, 2019, 784, 653-659.	5.5	15
59	Mechanism of SiC crystals growth on {100} and {111} diamond surfaces upon microwave heating. Materials Characterization, 2010, 61, 648-652.	4.4	13
60	Recrystallization and grain growth in nano-structured austenitic stainless steel under electric current heating. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1380-1383.	0.8	13
61	Mechanisms of plastic deformation in ultrafine-grained aluminium – In-situ and ex-post studies. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 715, 320-331.	5.6	13
62	The influence of an ECAP-based deformation process on the microstructure and properties of electrolytic tough pitch copper. Journal of Materials Science, 2018, 53, 3862-3875.	3.7	13
63	The Influence of Hydrostatic Extrusion on the Properties of an Austenitic Stainless Steel. Solid State Phenomena, 2006, 114, 57-62.	0.3	12
64	Reduced activation ODS ferritic steel - recent development in high speed hot extrusion processing. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1128-1131.	1.8	12
65	The Strength and Ductility of 5483 Aluminium Alloy Processed by Various SPD Methods. Materials Science Forum, 0, 765, 423-428.	0.3	12
66	Effect of Cu on Amorphization of a TiNi Alloy during HPT and Shape Memory Effect after Postâ€Deformation Annealing. Advanced Engineering Materials, 2020, 22, 1900387.	3.5	12
67	Fabrication of hybrid nanocrystalline Al–Ti alloys by mechanical bonding through high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142549.	5.6	12
68	Morphology and chemical characterization of Ti surfaces modified for biomedical applications. New Biotechnology, 2007, 24, 438-442.	2.7	11
69	Grain growth in ultrafine grained aluminium processed by hydrostatic extrusion. Journal of Materials Science, 2008, 43, 7495-7500.	3.7	11
70	Synergic effects of grain refinement and precipitation strengthening. Journal of Materials Science, 2010, 45, 4877-4883.	3.7	11
71	Multiscale characterization of nanostructured Al–Si–Zr alloys obtained by rapid solidification method. Journal of Materials Science, 2011, 46, 5454-5459.	3.7	11
72	Effect of vanadium addition on the microstructure and mechanical properties of the ODS ferritic steels. Journal of Nuclear Materials, 2013, 442, S84-S88.	2.7	11

#	Article	IF	CITATIONS
73	Passive oxide film characterisation on Al-Cr-Fe and Al-Cu-Fe-Cr complex metallic alloys in neutral to alkaline electrolytes by photo- and electrochemical methods. Electrochimica Acta, 2014, 139, 289-301.	5.2	11
74	Incremental ECAP as a Method to Produce Ultrafine Grained Aluminium Plates. Key Engineering Materials, 2016, 710, 59-64.	0.4	11
75	Influence of high hydrostatic pressure annealing on the recrystallization of nanostructured austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 767, 138381.	5.6	11
76	High resolution scanning transmission electron microscopy (HR STEM) analysis of re-deposited layer on ASDEX Upgrade tile. Fusion Engineering and Design, 2011, 86, 1753-1756.	1.9	10
77	Relaxation studies of amorphous alloys with creep induced magnetic and structural anisotropy. Scripta Materialia, 2012, 67, 763-766.	5.2	10
78	Thermal stability of Al-Si12at.% nano-alloys confined between AlN layers in a nanomultilayer configuration. Scripta Materialia, 2017, 130, 210-213.	5.2	10
79	Microstructure and Corrosion Behavior of the Friction Stir Welded Joints Made from Ultrafine Grained Aluminum. Advanced Engineering Materials, 2017, 19, 1600807.	3.5	10
80	A new hybrid process to produce ultrafine grained aluminium plates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 714, 105-116.	5.6	10
81	Using high-pressure torsion to fabricate an Al–Ti hybrid system with exceptional mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140114.	5.6	10
82	CdTe-based crystals with Mg, Se, or Mn as materials for X and gamma ray detectors: Selected physical properties. Progress in Crystal Growth and Characterization of Materials, 2021, 67, 100543.	4.0	10
83	Fast-degrading PLA/ORMOGLASS fibrous composite scaffold leads to a calcium-rich angiogenic environment. International Journal of Nanomedicine, 2017, Volume 12, 4901-4919.	6.7	9
84	Nanostructure Formation in Austenitic Stainless Steel. Solid State Phenomena, 2008, 140, 173-178.	0.3	8
85	Mechanical behaviour of ultrafine grained Al-Mg alloys obtained by different processing routes. Archives of Metallurgy and Materials, 2012, 57, 869-876.	0.6	8
86	The Effect of High Pressure Torsion on Structural Refinement and Mechanical Properties of an Austenitic Stainless Steel. Journal of Nanoscience and Nanotechnology, 2013, 13, 3246-3249.	0.9	8
87	Al-Si/AlN nanomultilayered systems with reduced melting point: Experiments and simulations. Applied Surface Science, 2019, 493, 261-270.	6.1	8
88	Influence of dislocation structures on precipitation phenomena in rolled Al–Mg–Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139903.	5.6	8
89	Microstructural changes and formability of Al–Mg ultrafine-grained aluminum plates processed by multi-turn ECAP and upsetting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142202.	5.6	8
90	The influence of sintering time on the microstructural properties of chromium-rhenium matrix composites. International Journal of Refractory Metals and Hard Materials, 2016, 59, 78-86.	3.8	7

#	Article	IF	CITATIONS
91	The importance of microstructural heterogeneities in the work hardening of ultrafine-grained aluminum, studied by in-situ TEM straining and mechanical tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138200.	5.6	7
92	Tailoring the morphology of nanotubular oxide layers on Ti-24Nb-4Zr-8Sn β-phase titanium alloy. Thin Solid Films, 2019, 679, 15-21.	1.8	7
93	Precipitation strengthening of Al-Mg-Si alloy subjected to multiple accumulative roll bonding combined with a heat treatment. Materials and Design, 2022, 219, 110813.	7.0	7
94	The Role of Inclusions in the Corrosion Resistance of Hydrostatically Extruded Steel Products. Solid State Phenomena, 2006, 114, 189-198.	0.3	6
95	Fabrication of Nanostructured Materials by Hydrostatic Extrusion: Advantages and Limitations. Materials Science Forum, 2007, 561-565, 913-916.	0.3	6
96	Microstructure investigations of dental composite samples prepared by focused ion beam technique. Journal of Microscopy, 2010, 237, 427-430.	1.8	6
97	Carbide formation in tungsten coatings on carbon-fibre reinforced carbon substrates. Thin Solid Films, 2013, 531, 21-25.	1.8	6
98	Studies of the surface regions of (Cd,Mn)Te crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1523-1527.	0.8	6
99	Precipitation in a Nanograined 7475 Aluminium Alloy—Processing, Properties and Nanoanalysis. Advanced Engineering Materials, 2014, 16, 482-485.	3.5	6
100	Microstructural response to compression deformation of ultrafine-grained aluminum with various microstructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 763, 138184.	5.6	6
101	Microstructure, tensile properties and formability of ultrafine-grained Al–Mn square plates processed by Incremental ECAP. Materials and Design, 2020, 196, 109125.	7.0	6
102	Enhancing the Electrical Conductivity of Electrolytic Tough Pitch Copper Rods Processed by Incremental Equal Channel Angular Pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3749-3753.	2.2	6
103	The impact of the stacking fault energy of nanostructured metals on phenomena during annealing at the high hydrostatic pressure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 808, 140913.	5.6	6
104	The Influence of Hydrostatic Extrusion on the Microstructure of 6082 Aluminium Alloy. Solid State Phenomena, 2006, 114, 145-150.	0.3	5
105	Chemical Surface Modifications of Titanium Implants. Macromolecular Symposia, 2007, 253, 115-121.	0.7	5
106	Recrystallization in Nanostructured Austenitic Stainless Steel. Materials Science Forum, 0, 584-586, 966-970.	0.3	5
107	A Comparison of Warm and Combined Warm and Lowâ€Temperature Processing Routes for the Equalâ€Channel Angular Pressing of Pure Titanium. Advanced Engineering Materials, 2020, 22, 1900698.	3.5	5
108	A multiscale experimental analysis of mechanical properties and deformation behavior of sintered copper–silicon carbide composites enhanced by high-pressure torsion. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	3.8	5

#	Article	IF	CITATIONS
109	Influence of microstructural features on the growth of nanotubular oxide layers on β-phase Ti-24Nb-4Zr-8Sn and αÂ+Âβ-phase Ti-13Nb-13Zr alloys. Surface and Coatings Technology, 2021, 425, 127695.	4.8	5
110	Improvement of Mechanical Properties of 7475 Aluminium Alloy by the Combination of SPD Processing and Annealing. Materials Science Forum, 0, 690, 311-314.	0.3	4
111	Simulations of the elastic properties of nanomaterials using multiscale modelling methods. Mechanics of Materials, 2013, 67, 74-78.	3.2	4
112	Ultrafineâ€Grained Plates and Sheets: Processing, Anisotropy and Formability. Advanced Engineering Materials, 2020, 22, 1900666.	3.5	4
113	Application of 3D DIC-Assisted Residual Stress Measurements for Friction Stir Welding Weld from Ultrafine-Grained Aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 20-25.	2.2	4
114	Evolution of pitting corrosion resistance and mechanical properties in ultrafine-grained commercially pure aluminium during annealing. Journal of Materials Science, 2021, 56, 16726-16744.	3.7	4
115	Application of Electron Beam Welding Technique for Joining Ultrafine-Grained Aluminum Plates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 18-24.	2.2	4
116	Effect of Fiber Orientation on Microstructure and Texture Evolution During the Coldâ€Rolling of Al–Mg–Si Alloy. Advanced Engineering Materials, 2022, 24, .	3.5	4
117	Mechanical Properties of Ultra-Fine Grained Al-Li Alloys. Materials Science Forum, 2006, 513, 25-34.	0.3	3
118	Degradation of Engineering Materials – Implications to Regenerative Medicine. Macromolecular Symposia, 2007, 253, 1-9.	0.7	3
119	The Influence of Nano-Silica on the Wear Resistance of Ceramic – Polymer Composites Intended for Dental Fillings. Solid State Phenomena, 0, 151, 135-138.	0.3	3
120	Thermal stability of hydrostatically extruded EUROFER 97 steel. Fusion Engineering and Design, 2009, 84, 1116-1118.	1.9	3
121	Precipitate Strengthening of Nanostructured Aluminium Alloy. Journal of Nanoscience and Nanotechnology, 2012, 12, 8783-8786.	0.9	3
122	Tailoring Microstructure and Mechanical Properties of 6063 Aluminium Alloy for Lightweight Structural Parts. Materials Science Forum, 0, 765, 388-392.	0.3	3
123	Formation of the Nitrided Layers on an Austenitic Stainless Steel with Different Grain Structures. Advanced Engineering Materials, 2018, 20, 1701049.	3.5	3
124	Forming Ability of Ultrafineâ€Grained Aluminum Plates Processed by Incremental Equal Channel Angular Pressing. Advanced Engineering Materials, 2019, 21, 1900473.	3.5	3
125	Effect of Pt Deposits on TiO2 Electrocatalytic Activity Highlighted by Electron Tomography. ACS Applied Materials & Interfaces, 2019, 11, 18841-18848.	8.0	3
126	A Novel Rolling Approach to Refining the Microstructure and Enhancing the Mechanical Strength of Pure Aluminium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 830-844.	2.2	3

#	Article	IF	CITATIONS
127	Effect of microstructural features on the corrosion behavior of severely deformed Al–Mg–Si alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 868-878.	1.5	3
128	Solid-state welding of ultrafine grained copper rods. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	3.8	3
129	Tribological behavior of a hydrostatically extruded ultra-fine grained Ti-13Nb-13Zr alloy. Materialpruefung/Materials Testing, 2019, 61, 543-548.	2.2	3
130	Local changes in the microstructure, mechanical and electrochemical properties of friction stir welded joints from aluminium of varying grain size. Journal of Materials Research and Technology, 2021, 15, 5968-5987.	5.8	3
131	Achieving Superplastic Elongations in an AZ80 Magnesium Alloy Processed by Highâ€Pressure Torsion. Advanced Engineering Materials, 2022, 24, .	3.5	3
132	Microstructure evolution and strain localization in Cu and Cu-8Al single crystals subjected to channel-die compression. Journal of Microscopy, 2006, 223, 275-278.	1.8	2
133	Optimization of Particle Size and Distribution by Hydrostatic Extrusion. Materials Science Forum, 2007, 561-565, 869-872.	0.3	2
134	Structural features and gas tightness of EB-PVD 1Ce10ScSZ electrolyte films. Materials Science-Poland, 2012, 30, 170-179.	1.0	2
135	A novel rolling procedure to enhance ECAP processed ultrafine grained materials. Materials Letters, 2018, 233, 270-273.	2.6	2
136	Microstructural characterization and residual stress distribution in a nanostructured austenitic stainless steel. International Journal of Materials Research, 2018, 109, 837-843.	0.3	2
137	Phenomena Occurring in Nanostructured Stainless Steel 316LVM during Annealing under High Hydrostatic Pressure. Advanced Engineering Materials, 2019, 21, 1800101.	3.5	2
138	An electron microscopy threeâ€dimensional characterization of titania nanotubes. Microscopy Research and Technique, 2019, 82, 173-177.	2.2	2
139	The impact of high hydrostatic pressure maintenance after high-pressure torsion on phenomena during high hydrostatic pressure annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142874.	5.6	2
140	Inhomogeneity of mechanical properties across the sheet width in a model Al–Li–Zr alloy. Materials Characterization, 2002, 49, 157-163.	4.4	1
141	Simulation of the shrinkage of dental polymeric composites. E-Polymers, 2005, 5, .	3.0	1
142	Microstructure and Mechanical Properties of Binary Al-Li Alloys Processed by ECAE. Solid State Phenomena, 2005, 101-102, 73-76.	0.3	1
143	Nanomaterials in Dental Applications. Solid State Phenomena, 2008, 140, 133-140.	0.3	1
144	Particle Redistribution and Grain Refinement during Processing by Hydrostatic Extrusion. Materials Science Forum, 2008, 584-586, 541-546.	0.3	1

#	Article	IF	CITATIONS
145	Perspectives for Nanostructured Light Metals and Alloys. Materials Science Forum, 0, 618-619, 405-410.	0.3	1
146	Nano-Refinement, Nano-Consolidation: Different Fabrication Routes of Nano-Crystalline Aluminium Alloys. Materials Science Forum, 2010, 667-669, 87-90.	0.3	1
147	Application of LPR and EIS techniques for onâ€site corrosion monitoring at the geothermal plant in Central Poland. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 1518-1528.	1.5	1
148	Mechanism of Grain Refinement in Aluminium in the Process of Hydrostatic Extrusion. Solid State Phenomena, 0, , 109-116.	0.3	1
149	Scanning electron microscopy investigation of tooth/filling bonding. E-Polymers, 2005, 5, .	3.0	0
150	Variable Elastic-Plastic Properties of the Grain Boundaries and Their Effect on the Macroscopic Flow Stress of Nano-Crystalline Metals. Materials Research Society Symposia Proceedings, 2009, 1224, 1.	0.1	0
151	Mechanical and Physical Properties of Nano-Metals. Materials Science Forum, 2010, 654-656, 1110-1113.	0.3	0
152	Effect of Heat Treatment on Formation of Al-Al ₃ Ni Hypereutectic Alloys. Key Engineering Materials, 0, 592-593, 513-516.	0.4	0
153	Corrosion resistance of SiO <inf>2</inf> thin film coated biomedical Ti-13Nb-13Zr titanum alloy by E-Beam. , 2015, , .		0
154	Effect of Different Initial Lamellar Plate Thicknesses on Grain Refinement and Superplastic Behaviour in HPT-Processed Ti-6Al-4V Alloy. Defect and Diffusion Forum, 0, 385, 182-188.	0.4	0