Yanbing Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4980687/publications.pdf

Version: 2024-02-01

	172386	138417
5,162	29	58
citations	h-index	g-index
59	59	5554
docs citations	times ranked	citing authors
		5,162 29 citations h-index 59 59

#	Article	IF	CITATIONS
1	Insight into solid-state ion-exchanged Cu-based zeolite (SSZ-13, SAPO-18, and SAPO-34) catalysts for the NH3-SCR reaction: The promoting role of NH4-form zeolite substrates. Applied Surface Science, 2022, 571, 151328.	3.1	33
2	Oxygen Vacancy-Governed Opposite Catalytic Performance for C ₃ H ₆ and C ₃ H ₈ Combustion: The Effect of the Pt Electronic Structure and Chemisorbed Oxygen Species. Environmental Science & Environmental Scien	4.6	44
3	Understanding the direct relationship between various structure-directing agents and low-temperature hydrothermal durability over Cu-SAPO-34 during the NH ₃ -SCR reaction. Catalysis Science and Technology, 2022, 12, 579-595.	2.1	13
4	Neighboring sp-Hybridized Carbon Participated Molecular Oxygen Activation on the Interface of Sub-nanocluster CuO/Graphdiyne. Journal of the American Chemical Society, 2022, 144, 4942-4951.	6.6	67
5	Surface modification of macroporous La0.8Sr0.2CoO3 perovskite oxides integrated monolithic catalysts for improved propane oxidation. Catalysis Today, 2021, 376, 168-176.	2.2	13
6	The promoting mechanism of in situ Zr doping on the hydrothermal stability of Fe-SSZ-13 catalyst for NH3-SCR reaction. Applied Catalysis B: Environmental, 2021, 286, 119816.	10.8	45
7	Graphdiyne: an emerging two-dimensional (2D) carbon material for environmental remediation. Environmental Science: Nano, 2021, 8, 1863-1885.	2.2	22
8	Interfacial sp C–O–Mo Hybridization Originated High-Current Density Hydrogen Evolution. Journal of the American Chemical Society, 2021, 143, 8720-8730.	6.6	152
9	Oxygen Vacancies and Lewis Acid Sites Synergistically Promoted Catalytic Methane Combustion over Perovskite Oxides. Environmental Science & Environmen	4.6	71
10	A Review on the Impact of SO ₂ on the Oxidation of NO, Hydrocarbons, and CO in Diesel Emission Control Catalysis. ACS Catalysis, 2021, 11, 12446-12468.	5 . 5	36
11	Adjacent single-atom irons boosting molecular oxygen activation on MnO2. Nature Communications, 2021, 12, 5422.	5.8	114
12	Efficient Strategy to Regenerate Phosphorus-Poisoned Cu-SSZ-13 Catalysts for the NH ₃ -SCR of NO <i>_x</i> : The Deactivation and Promotion Mechanism of Phosphorus. ACS Catalysis, 2021, 11, 12963-12976.	5.5	36
13	Promoting effect of post-synthesis treatment strategy on NH3-SCR performance and hydrothermal stability of Cu-SAPO-18. Microporous and Mesoporous Materials, 2021, 328, 111496.	2.2	8
14	Fabrication and Excellent Antibacterial Activity of Well-defined CuO/Graphdiyne Nanostructure. Chemical Research in Chinese Universities, 2021, 37, 1341-1347.	1.3	11
15	Solar-driven efficient methane catalytic oxidation over epitaxial ZnO/La0.8Sr0.2CoO3 heterojunctions. Applied Catalysis B: Environmental, 2020, 265, 118469.	10.8	44
16	Nanostructured MoO3 for Efficient Energy and Environmental Catalysis. Molecules, 2020, 25, 18.	1.7	74
17	Engineering the Nucleophilic Active Oxygen Species in CuTiO _{<i>x</i>} for Efficient Low-Temperature Propene Combustion. Environmental Science & Environmental Science	4.6	48
18	Insight into SO2 poisoning over Cu-SAPO-18 used for NH3-SCR. Microporous and Mesoporous Materials, 2020, 303, 110294.	2.2	30

#	Article	IF	Citations
19	Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nature Communications, 2020, 11, 1062.	5.8	90
20	Elucidating the Nature of the Cu(I) Active Site in CuO/TiO ₂ for Excellent Low-Temperature CO Oxidation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7091-7101.	4.0	51
21	Interfacial structure-governed SO ₂ resistance of Cu/TiO ₂ catalysts in the catalytic oxidation of CO. Catalysis Science and Technology, 2020, 10, 1661-1674.	2.1	20
22	Oxygen Vacancy Promoted O ₂ Activation over Perovskite Oxide for Low-Temperature CO Oxidation. ACS Catalysis, 2019, 9, 9751-9763.	5.5	296
23	Robust and well-controlled TiO ₂ –Al ₂ O ₃ binary nanoarray-integrated ceramic honeycomb for efficient propane combustion. CrystEngComm, 2019, 21, 2727-2735.	1.3	5
24	Molecular O ₂ Activation over Cu(I)-Mediated C≡N Bond for Low-Temperature CO Oxidation. ACS Applied Materials & Date: Activation over Cu(I)-Mediated C≡N Bond for Low-Temperature CO Oxidation.	4.0	22
25	Copper-based non-precious metal heterogeneous catalysts for environmental remediation. Chinese Journal of Catalysis, 2018, 39, 566-582.	6.9	63
26	Mesoporous Perovskite Nanotubeâ€Array Enhanced Metallicâ€State Platinum Dispersion for Low Temperature Propane Oxidation. ChemCatChem, 2018, 10, 2184-2189.	1.8	14
27	Methanol Production: Cuâ€Decorated ZnO Nanorod Array Integrated Structured Catalysts for Lowâ€Pressure CO ₂ Hydrogenation to Methanol (Adv. Mater. Interfaces 3/2018). Advanced Materials Interfaces, 2018, 5, 1870011.	1.9	3
28	Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane. Chinese Chemical Letters, 2018, 29, 252-260.	4.8	73
29	Cuâ€Decorated ZnO Nanorod Array Integrated Structured Catalysts for Lowâ€Pressure CO ₂ Hydrogenation to Methanol. Advanced Materials Interfaces, 2018, 5, 1700730.	1.9	20
30	Molecular Insights into NO-Promoted Sulfate Formation on Model TiO ₂ Nanoparticles with Different Exposed Facets. Environmental Science & Exposed Facets.	4.6	19
31	Rational design, synthesis and evaluation of ZnO nanorod array supported Pt:La0.8Sr0.2MnO3 lean NOx traps. Applied Catalysis B: Environmental, 2018, 236, 348-358.	10.8	22
32	Scalable Integration of Highly Uniform Mn _{<i>xx/i></i>} Co _{3â^'<i>x</i>} O ₄ Nanosheet Array onto Ceramic Monolithic Substrates for Low‶emperature Propane Oxidation. ChemCatChem, 2017, 9, 4112-4119.	1.8	36
33	Understanding low temperature oxidation activity of nanoarray-based monolithic catalysts: from performance observation to structural and chemical insights. Emission Control Science and Technology, 2017, 3, 18-36.	0.8	18
34	Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization. CrystEngComm, 2017, 19, 5128-5136.	1.3	16
35	Nano-array integrated monolithic devices: toward rational materials design and multi-functional performance by scalable nanostructures assembly. CrystEngComm, 2016, 18, 2980-2993.	1.3	23
36	Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability. Applied Catalysis B: Environmental, 2016, 180, 150-160.	10.8	174

#	Article	IF	CITATIONS
37	ZnO/perovskite core–shell nanorod array based monolithic catalysts with enhanced propane oxidation and material utilization efficiency at low temperature. Catalysis Today, 2015, 258, 549-555.	2.2	35
38	Nano-array based monolithic catalysts: Concept, rational materials design and tunable catalytic performance. Catalysis Today, 2015, 258, 441-453.	2.2	48
39	Selfâ€Assembly of Functional Molecules into 1D Crystalline Nanostructures. Advanced Materials, 2015, 27, 985-1013.	11.1	130
40	Monolithically Integrated Spinel M _{<i>x</i>} Co _{3â^'<i>x</i>} O ₄ (M=Co, Ni, Zn) Nanoarray Catalysts: Scalable Synthesis and Cation Manipulation for Tunable Lowâ€Temperature CH ₄ and CO Oxidation. Angewandte Chemie - International Edition, 2014, 53, 7223-7227.	7.2	170
41	Mechanical-Agitation-Assisted Growth of Large-Scale and Uniform ZnO Nanorod Arrays within 3D Multichannel Monolithic Substrates. Crystal Growth and Design, 2013, 13, 3657-3664.	1.4	27
42	Single crystalline brookite titanium dioxide nanorod arrays rooted on ceramic monoliths: a hybrid nanocatalyst support with ultra-high surface area and thermal stability. CrystEngComm, 2013, 15, 8345.	1.3	19
43	Nonprecious catalytic honeycombs structured with three dimensional hierarchical Co3O4 nano-arrays for high performance nitric oxide oxidation. Journal of Materials Chemistry A, 2013, 1, 9897.	5.2	73
44	Robust 3-D configurated metal oxide nano-array based monolithic catalysts with ultrahigh materials usage efficiency and catalytic performance tunability. Nano Energy, 2013, 2, 873-881.	8.2	76
45	Hierarchically nanostructured materials for sustainable environmental applications. Frontiers in Chemistry, $2013,1,18.$	1.8	62
46	In situ TPR removal: a generic method for fabricating tubular array devices with mechanical and structural soundness, and functional robustness on various substrates. Journal of Materials Chemistry, 2012, 22, 23098.	6.7	14
47	Three dimensional koosh ball nanoarchitecture with a tunable magnetic core, fluorescent nanowire shell and enhanced photocatalytic property. Journal of Materials Chemistry, 2012, 22, 6862.	6.7	22
48	Synthesis, characterization and CO oxidation of TiO2/(La,Sr)MnO3 composite nanorod array. Catalysis Today, 2012, 184, 178-183.	2.2	27
49	Structure and magnetic properties of three-dimensional (La,Sr)MnO3 nanofilms on ZnO nanorod arrays. Applied Physics Letters, 2011, 98, 123105.	1.5	32
50	Construction of Heterojunction Nanowires from Polythiophene/Polypyrrole for Applications as Efficient Switches. Chemistry - an Asian Journal, 2011, 6, 98-102.	1.7	10
51	Field Emission and Electrical Switching Properties of Large-Area CuTCNQ Nanotube Arrays. Crystal Growth and Design, 2010, 10, 237-243.	1.4	45
52	Architecture of graphdiyne nanoscale films. Chemical Communications, 2010, 46, 3256.	2.2	2,210
53	Assembled Organic/Inorganic pâ^'n Junction Interface and Photovoltaic Cell on a Single Nanowire. Journal of Physical Chemistry Letters, 2010, 1, 327-330.	2.1	134
54	Light-Controlled Organic/Inorganic Pâ^'N Junction Nanowires. Journal of the American Chemical Society, 2008, 130, 9198-9199.	6.6	162

YANBING GUO

#	Article	IF	CITATIONS
55	Induced helix formation and stabilization of a meta-linked polymer containing pyridine units. Journal of Polymer Science Part A, 2007, 45, 1403-1412.	2.5	7