Jianchao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4980478/publications.pdf

Version: 2024-02-01

430874 395702 1,117 33 18 33 h-index citations g-index papers 34 34 34 943 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Drought evolution, severity and trends in mainland China over $1961\hat{a}\in 2013$. Science of the Total Environment, 2018, 616-617, 73-89.	8.0	176
2	Projections of drought characteristics in China based on a standardized precipitation and evapotranspiration index and multiple GCMs. Science of the Total Environment, 2020, 704, 135245.	8.0	126
3	Performance and relationship of four different agricultural drought indices for drought monitoring in China's mainland using remote sensing data. Science of the Total Environment, 2021, 759, 143530.	8.0	76
4	Future projections of extreme temperature events in different sub-regions of China. Atmospheric Research, 2019, 217, 150-164.	4.1	58
5	Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China. Agricultural Water Management, 2018, 201, 246-257.	5.6	52
6	The best alternative for estimating reference crop evapotranspiration in different sub-regions of mainland China. Scientific Reports, 2017, 7, 5458.	3.3	50
7	Modeling impacts of mulching and climate change on crop production and N2O emission in the Loess Plateau of China. Agricultural and Forest Meteorology, 2019, 268, 86-97.	4.8	46
8	Effects of continuous plastic mulching on crop growth in a winter wheat-summer maize rotation system on the Loess Plateau of China. Agricultural and Forest Meteorology, 2019, 271, 385-397.	4.8	43
9	Bias correction of precipitation data and its effects on aridity and drought assessment in China over 1961–2015. Science of the Total Environment, 2018, 639, 1015-1027.	8.0	42
10	After-effects of straw and straw-derived biochar application on crop growth, yield, and soil properties in wheat (Triticum aestivum L.) -maize (Zea mays L.) rotations: A four-year field experiment. Science of the Total Environment, 2021, 780, 146560.	8.0	42
11	Prediction of annual reference evapotranspiration using climatic data. Agricultural Water Management, 2010, 97, 300-308.	5.6	35
12	Impact assessment of climate change and later-maturing cultivars on winter wheat growth and soil water deficit on the Loess Plateau of China. Climatic Change, 2016, 138, 157-171.	3.6	35
13	National-Scale Variation and Propagation Characteristics of Meteorological, Agricultural, and Hydrological Droughts in China. Remote Sensing, 2020, 12, 3407.	4.0	26
14	Spatial-temporal distribution of winter wheat (Triticum aestivum L.) roots and water use efficiency under ridge–furrow dual mulching. Agricultural Water Management, 2020, 240, 106301.	5.6	26
15	Permanent wilting point plays an important role in simulating winter wheat growth under water deficit conditions. Agricultural Water Management, 2020, 229, 105954.	5.6	24
16	Quantifying the interaction of water and radiation use efficiency under plastic film mulch in winter wheat. Science of the Total Environment, 2021, 794, 148704.	8.0	22
17	Characteristics of Water Infiltration in Layered Water-Repellent Soils. Pedosphere, 2018, 28, 775-792.	4.0	21
18	Spatiotemporal variability of standardized precipitation evapotranspiration index in mainland China over 1961–2016. International Journal of Climatology, 2020, 40, 4781-4799.	3.5	21

#	Article	IF	Citations
19	Soil water repellency decreases summer maize growth. Agricultural and Forest Meteorology, 2019, 266-267, 1-11.	4.8	20
20	Simulating the Influences of Soil Water Stress on Leaf Expansion and Senescence of Winter Wheat. Agricultural and Forest Meteorology, 2020, 291, 108061.	4.8	20
21	Estimating crop genetic parameters for DSSAT with modified PEST software. European Journal of Agronomy, 2020, 115, 126017.	4.1	20
22	Response of wheat and maize growth-yields to meteorological and agricultural droughts based on standardized precipitation evapotranspiration indexes and soil moisture deficit indexes. Agricultural Water Management, 2022, 266, 107566.	5.6	19
23	Performance of HYDRUS-1D for simulating water movement in water-repellent soils. Canadian Journal of Soil Science, 2018, 98, 407-420.	1.2	18
24	Projection of the climate change effects on soil water dynamics of summer maize grown in water repellent soils using APSIM and HYDRUS-1D models. Computers and Electronics in Agriculture, 2021, 185, 106142.	7.7	18
25	Dynamic within-season irrigation scheduling for maize production in Northwest China: A Method Based on Weather Data Fusion and yield prediction by DSSAT. Agricultural and Forest Meteorology, 2020, 285-286, 107928.	4.8	17
26	Quantifying the compensatory effect of increased soil temperature under plastic film mulching on crop growing degree days in a wheat–maize rotation system. Field Crops Research, 2021, 260, 107993.	5.1	16
27	Reduced root water uptake of summer maize grown in water-repellent soils simulated by HYDRUS-1D. Soil and Tillage Research, 2021, 209, 104925.	5.6	16
28	Comparisons among four different upscaling strategies for cultivar genetic parameters in rainfed spring wheat phenology simulations with the DSSAT-CERES-Wheat model. Agricultural Water Management, 2021, 258, 107181.	5.6	9
29	Interaction between soil water and fertilizer utilization on maize under plastic mulching in an arid irrigation region of China. Agricultural Water Management, 2022, 265, 107494.	5.6	7
30	Plastic film mulching affects field water balance components, grain yield, and water productivity of rainfed maize in the Loess Plateau, China: A synthetic analysis of multi-site observations. Agricultural Water Management, 2022, 266, 107570.	5.6	7
31	Better Drought Index between SPEI and SMDI and the Key Parameters in Denoting Drought Impacts on Spring Wheat Yields in Qinghai, China. Agronomy, 2022, 12, 1552.	3.0	5
32	Future climate change impacts on mulched maize production in an arid irrigation area. Agricultural Water Management, 2022, 266, 107550.	5.6	3
33	Differences in Spatiotemporal Variability of Potential and Reference Crop Evapotranspirations. Water (Switzerland), 2022, 14, 988.	2.7	0